

BEST OF ALLERGOLOGIE Allergie alimentaire

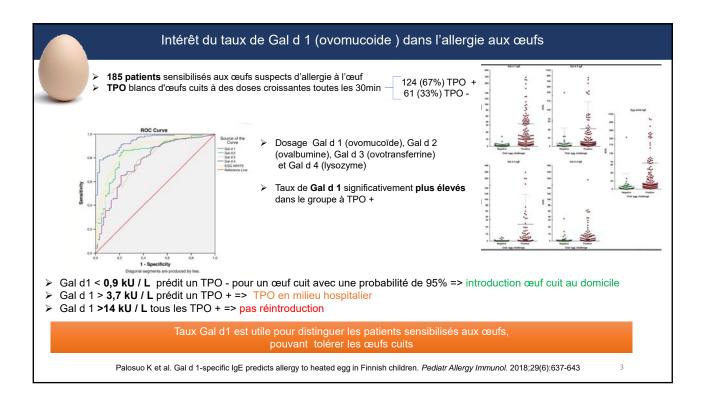
Anne-Laure Godet
Jean-Alexandre Cuq

Responsables Best Of Allergie alimentaire : Cécile HISS & Franck GODESKY

1

Lien entre les caractéristiques périnatales et le risque futur d'allergie alimentaire

- ➤ Etude de cohorte , prospective, ajustée
- > 1 086 378 enfants nés en Suède (2001-2012)
- > 13 années de suivi
- > 2,5% enfants (26 732): au moins 1 allergie alimentaire

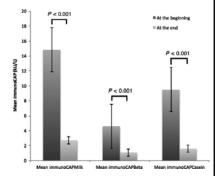

Perinatal characteristics	Observed events of food allergy/total exposed to perinatal characteristics (%)	Observed events of food allergy/total unexposed to perinatal characteristics (%)	Crude HR (96% CI)	Adjusted HR (16% CI (model 13)**	Adjusted HR (95%CI [model 2]) (Two recorded diagnoses, adjusted HR (95% CI [model 2]):	Expected events of food allergy!	Excess risk/100,000 person- years	Attributable fraction (%)
Cesarean delivery	5,393/185,117 (2.9)	21,339/901,262 (2.4)			1.21 (1.18-1.25)		4,456	78	17
Elective	2,578/92,220 (2.7)		1.16 (1.12-1.21)	1.16 (1.11-1.21)	1.18 (1.13-1.23)		2,184	64	15
Emergency Gestational age	2,815/90,319 (3.1)		1.33 (1.28-1.39)	1.23 (1.18-1.28)	1.24 (1.19-1.29)	1.25 (1.18-1.32)	2,270	94	19
Very preterm birth, <32 wk	147/7,741 (1.9)	23,233/949,177 (2.4)	0.78 (0.66-0.91)	0.76 (0.65-0.89) (0.74 (0.56-0.96)	(0.41-0.93)	199	-102	-35
Moderately preterm, ≥32-36 wk	1,304/52,714 (2.5)		1.01 (0.95-1.06)	0.99 (0.94-1.05)	0.96 (0.90-1.03)	0.95 (0.87-1.04)	1,358	-16	-4
Postterm, ≥42 wk	2,047/76,718 (2.7)		1.07 (1.02-1.12)	1.02 (0.98-1.07)	1.01 (0.97-1.06)	1.07 (1.00-1.13)	2,027	4	31
Low birth weight									
Very low, ≤1,499 g	117/6,093 (1.9)	25,751/1,044,877 (2.5)	0.79 (0.66-0.94)	0.77 (0.64-0.92)	1.17 (0.80-1.69)	1.00 (0.58-1.72)	100	43	15
Moderately low, 1,500-2,499 g	866/35,510 (2.4)		0.99 (0.93-1.06)	0.98 (0.92-1.05)	0.96 (0.88-1.04)	0.95 (0.85-1.06)	902	-16	-4
Fetal growth									
Small for gestational age	2,742/109,313 (2.5)	20,797/858,420 (2.4)	1.04 (1.00-1.08)	1.00 (0.96-1.04)	0.99 (0.95-1.03)	0.98 (0.93-1.04)	2,770	-4	-1
LGA	3,178/118,071 (2.7)		1.10 (1.06-1.14)	1.17 (1.12-1.21)	1.15 (1.10-1.19)	1.19 (1.13-1.26)	2,763	53	13
Low Apgar score (<7) at 5 min	348/11,196 (3.1)	26,282/1,070,413 (2.5)	1.30 (1.17-1.45)	1.29 (1.11-1.37)	1.22 (1.10-1.36)	1.35 (1.17-1.55)	285	90	18

- L'accouchement par césarienne (HR, 1.21; 95% CI, 1.18-1.25) semble être associé à un risque accru d'allergie alimentaire
- Pas d'association trouvée entre l'allergie alimentaire et l'accouchement modérément prématuré, ou un petit poids de naissance ou faible poids pour l'âge gestationnel

L'exposition à la microflore vaginale pourrait réduire le risque de manifestations atopiques de la progéniture

Mitselou et al . Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children. JACI 2018;142(5):1510-1514

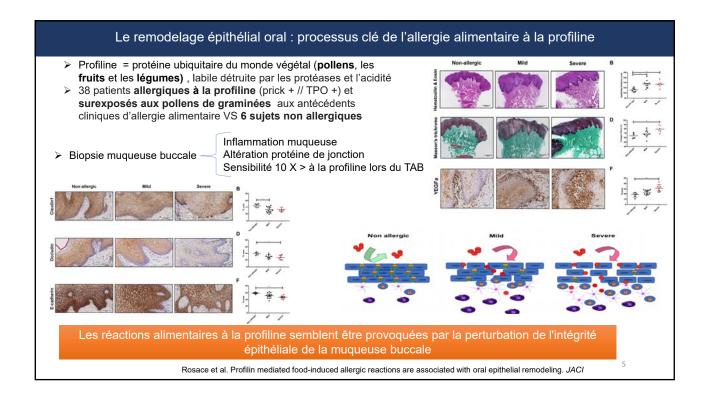
Rôle du lait cuit dans l'induction de la tolérance au lait cru

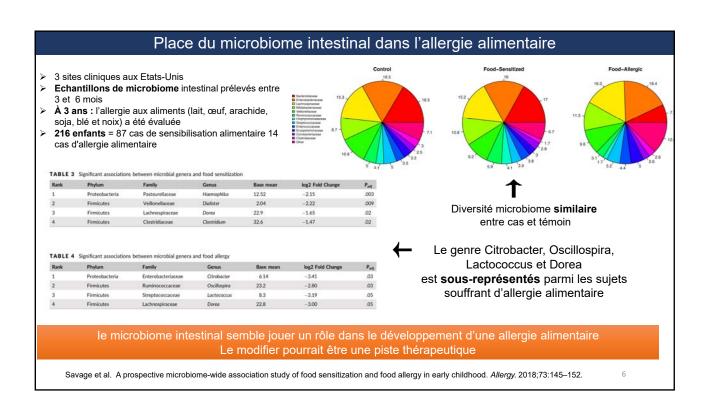

- contrôlée randomisée, cas/témoin
- 84 patients allergiques au lait (6 mois à 3 ans) ayant toléré un TPO lait cuit

Cas

lait cuit pendant 1 an (muffin pendant 6 mois puis fromage cuit pendant 6 mois)

éviction de tous les produits laitiers pendant 1 an

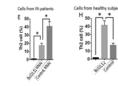

- > Taux IgE au lait, caséine et de bêta-lactoglobuline, prick test réalisés au début de l'étude, à 6 mois et à 1 an
- > TPO au lait cru à la fin de l'étude

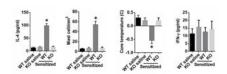


➤ La tolérance au lait cru est significativement plus élevée dans le groupe cas que dans le groupe témoin 88,1% du groupe cas ne présentent plus de symptômes vs 66,7% dans le groupe témoin (P=0.018)

Consommer du lait cuit est un bon moyen pour induire une tolérance plus rapide au lait cru

Esmaelizadeh H et al. Effect of baked milk on accelerating unheated cow's milk tolerance: A control randomized clinical trial. Pediatr Allergy Immunol, 2018 Nov;29(7):747-753


Bcl2L12, une protéine centrale dans le déclenchement de l'allergie alimentaire non IgE (FA)

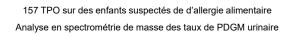

- Etude multicentrique
- Japonaise
- Sur l'Homme (1&2)
- Et la Souris (3&4)

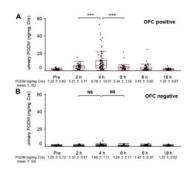
1. Bcl2L12 est plus exprimée dans les LT CD4+ des sujets allergiques par rapport aux sujets sains (plus fort taux de Cytokines Th2)

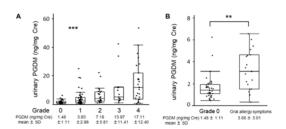
In vitro :
 Chez les sujets allergiques, l'inhibition de Bcl2L12 diminuait la réponse Th2
 Chez les sujets sains, l'introduction Bcl2L12 augmentait la réponse Th2

3. In vivo : La mutation (KO) du gène de Bcl2L12 supprimait la réponse allergique

- **4.** Mécanismes d'action de Bcl2L12 ?
 Analyse génomique : Complexe Bcl2L12 GATA3 au niveau du promoteur d'IL-4 dans le LT CD4 naïf, favorisant la voie Th2.
- Bcl2L12 joue un rôle central et nécessaire dans l'allergie alimentaire non IgE
 Elle forme un complexe avec GATA3 permettant la production d'IL-4 dans le LT CD4+ naïf

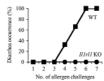

Feng B-Sui et al. Bcl2L12 plays a critical role in the development of intestinal allergy. Immunology Letters. 2018


7

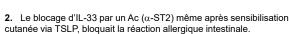

Le PDGM urinaire, un nouveau biomarqueur objectif dans l'allergie alimentaire immédiate

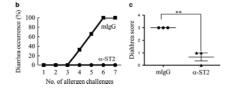
PDGM : un métabolite urinaire dérivé de la prostaglandine D2

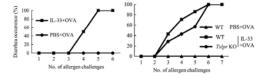
But : Déterminer un marqueur objectif du résultat d'un TPO


Dans l'allergie alimentaire immédiate

- Le taux de PDGM urinaire augmente 2h après l'ingestion de l'allergène
 - Pic à 4h : 1. Evaluer la sévérité de la réaction allergique
 - 2. Différencier un grade 0 d'une réaction subtile (oraux)


Shinichiro I et al. Urinary PGDM, a prostaglandin D2 metabolite, is a novel biomarker for objectively detecting allergic reactions of food allergy. JACI 2018

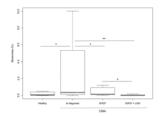

IL-33 et TSLP, des cytokines centrales de la « marche atopique »

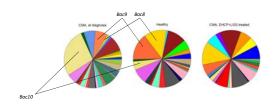

- Hypothèse : « la sensibilisation cutanée à un allergène dans la dermatite atopique conduirait à une allergie intestinale à ce même allergène »
- Méthode: Série d'IDR puis TPO sur des souris et recueil des manifestations cliniques (diarrhée +++) et biologiques d'allergie alimentaire

1. La mutation du Rc d'IL-33 (//1/1/KO) supprimait les diarrhées allergiques

- 3. IDR avec IL-33 seul (IL-33+OVA) : réaction d'allergie intestinale
- **4.** Blocage du Rc de TSLP (*Tslpr* KO) : Pas de modification de la réaction de la réaction allergique intestinale.

• IL-33 agit indépendamment ou en aval de TSLP


- IL-33 et TSLP semblent nécessaires dans le développement de la marche atopique
- IL-33 pourrait être une cible thérapeutique pour prévenir l'allergie alimentaire après sensibilisation cutanée


Han H et al. IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Society for Mucosal Immunology 2017

.

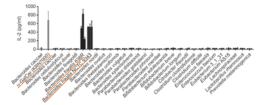
Le microbiote intestinal diffère entre l'enfant allergique au lait de vache non IgE et l'enfant sain

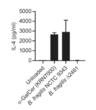
- 1. Evaluer la composition du microbiote intestinal chez l'enfant atteint d'allergie au lait de vache non IgE
- 2. Evaluer l'effet du traitement : Hydrolysat de Caséine (EHFC) +/- Probiotique Lactobacilus Rhamnosus G (LCG)
 - > Etude prospective, comparative, durée 6 mois
 - 46 enfants souffrant d'allergie au lait de vache non IgE versus enfants sains

- Enfants allergiques au moment du diagnostique : taux de Bactéroïdes supérieur
- Description de 29 olygotypes de BactéroïdesDifférence allergique/sain pour 3 olygotypes
- ✓ Un traitement par Hydrolysat de Caséine + Probiotique permet une rééquilibration du taux de Bactéroïdes

Dans l'allergie au lait de vache non IgE, comme dans l'APLV (étude précédente) :

- Il existe une dysbiose intestinale avec un taux plus important de Bactéroïdes
- Un traitement par hydrolysat de Caséine + Probiotique LCG permet une rééquilibration du microbiote


Roberto Berni Canani et al. Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow's milk allergy. Scientific Reports 2018


Certains sphingolipides produit par le microbiote intestinal seraient protecteurs de l'allergie alimentaire

- > Analyse multicentrique prospective du microbiome (séquençage ARNr 16s bactérien) et du métabolome bactérien intestinal chez 330 nourrissons de 3 à 6 mois après recueil de selles.
- Objectif : Identifier des métabolites protecteurs d'allergie alimentaire

5 métabolites lipidiques « protecteurs » : (taux plus élevé chez les sujets sensibilisés par rapport aux allergiques)

- Sphinganine
- 3-cetosphinanine
- 3-hydroxypalmitate
- N-palmitoylserine
- 13-methylmyristate

- Seul le sous-type Bactéroïdes Fragilis était associé à ce rôle protecteur
- L' α-GalactosylCéramide produit par Bactéoïdes Fragilis active les cellules iNKT
- Certains lipides produit par le microbiote intestinal peuvent protéger l'allergie alimentaire
 - Bactéroïdes Fragilis est la seule souche à avoir montré ce rôle protecteur
 - Via la production d' α -Galactosylcéramide qui active la cellule iNKT

Lee-Sarwar K et al. Intestinal microbial-derived sphingolipids are inversely associated with childhood food allergy. JACI 2018

1:

Merci de votre attention!