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As a more recent application, the development of antibody 
repertoires directed against conformational epitopes during 
immunotherapy has been monitored by recombinant aller-
gen chimeras. Although much progress has been made, the 
number and quality of recombinant allergens will undoubt-
edly increase and keep improving our knowledge in basic 
scientific investigations, diagnosis, and therapy of human al-
lergic diseases.  © 2017 The Author(s)

Published by S. Karger AG, Basel 

 Introduction 

 The history of recombinant allergens started with the 
very first publications on allergen cloning. In January 
1988, the cDNA sequence coding for the major house 
dust mite allergen Der p 1 was discovered in Australia and 
published as the first complete allergen sequence world-
wide  [1] . Interestingly, the publication of the identifica-
tion of the λgt11 clone expressing Der p 1 was only pub-
lished later that year  [2] . The sequence of a major allergen 
of the white-faced hornet  Dolichovespula maculata , then 
named antigen 5 and now designated as Dol m 5, was 
cloned in February 1988 in New York City and published 
by Fang et al.  [3] . The following year witnessed the dis-

 Keywords 

 Recombinant allergens · Structural biology · Allergy 
diagnosis · Vaccine development · Allergy immunotherapy ·
Clinical studies  

 Abstract 

 The years 1988–1995 witnessed the beginning of allergen 
cloning and the generation of recombinant allergens, which 
opened up new avenues for the diagnosis and research of 
human allergic diseases. Most crystal and solution structures 
of allergens have been obtained using recombinant aller-
gens. Structural information on allergens allows insights into 
their evolutionary biology, illustrates clinically observed 
cross-reactivities, and makes the design of hypoallergenic 
derivatives for allergy vaccines possible. Recombinant aller-
gens are widely used in molecule-based allergy diagnosis 
such as protein microarrays or suspension arrays. Recombi-
nant technologies have been used to produce well-charac-
terized, noncontaminated vaccine components with known 
biological activities including a variety of allergen deriva-
tives with reduced IgE reactivity. Such recombinant hypo-
allergens as well as wild-type recombinant allergens have 
been used successfully in several immunotherapy trials for 
more than a decade to treat birch and grass pollen allergy. 
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covery of the cDNA of the very first plant allergen, the 
major birch pollen allergen Bet v 1, in Austria, which was 
published in 1989  [4] . What these 3 allergens have in 
common is their expression in the bacterium  Escherichia 
coli  following the infection by λgt11 phages. Hence, they 
can justifiably be regarded as the first recombinant aller-
gens.

  So the era of recombinant allergens began in 1988. Der 
p 1 was identified by screening the λgt11 cDNA expres-
sion library with a rabbit anti-Der p 1 antiserum  [2] . Dol 
m 5 was discovered by screening a λgt11 cDNA expres-
sion library with hornet antigen 5-specific mouse sera  [3] . 
Bet v 1 was the first recombinant allergen that was identi-
fied by screening the expression library with IgE from 
sera of birch pollen-allergic patients  [4] . Previously, Bet v 
1 had been expressed in a cell-free wheat germ system in 
vitro and identified using sera from patients allergic to 
birch pollen  [5] . Again, in 1989, the second plant allergen, 
Dac g 2 from cocksfoot grass pollen, was identified by 
screening a λgt11 expression library with sera obtained 
from cocksfoot grass pollen-allergic individuals  [6] . The 
first fungal allergen, Asp f 1 from  Aspergillus fumigatus , 
was published in 1990  [7] , the first animal allergen, Fel d 
1 from the domestic cat, in 1991  [8] , and the first plant 
food allergen, Ara h 1 from peanut, in 1995  [9] .

  Recombinant Allergens in Structural Biology 

 Almost all crystal and solution structures of allergens 
have been obtained from recombinant allergens. There 
are 2 reasons for this: (1) most allergens occur in the al-
lergen source as a mixture of several isoforms that are 
very difficult to separate and (2) some allergens are pres-
ent at very low concentrations, making it impossible to 
obtain a sufficient quantity of the purified allergen for 
crystallization. Proteomic profiling or characterization 
by 2-dimensional electrophoresis has shown the presence 
of allergen isoforms in all analyzed allergen sources in-
cluding birch pollen  [10] , Timothy grass pollen  [11] ,  Pa-
rietaria judaica  pollen  [12] , peanut  [13] , house dust mite 
 [14] , fire ant  [15] , and cow’s milk  [16] . The recombinant 
production of allergens allows the deconvolution of iso-
form mixtures and the crystallization of individual iso-
forms. This approach has yielded the crystal structures of 
3 Bet v 1 isoforms, Bet v 1.0101 (former designation Bet 
v 1a, PDB 4A88)  [17] , Bet v 1.0106 (Bet v 1j, 4A8U)  [17] , 
and Bet v 1.0107 (Bet v 1l, 1FM4)  [18] .

  The Structural Database of Allergens (SDAP, https://
fermi.utmb.edu/) is a repository of allergenic proteins 

and various computational tools that can assist structural 
biology studies related to allergens. SDAP provides a list 
of and links to 92 allergen structures that are included in 
the Protein Data Bank (PDB, www.rcsb.org/pdb/). SDAP 
also provides 458 models for allergen and isoallergen 
structures. In their 2014 paper, Dall’Antonia et al.  [19] 
 presented 103 structures of allergens from the PDB. 
Structural information on allergens is helpful in recon-
structing the evolutionary history of protein architectures 
where amino acid sequence comparisons fail to reveal se-
quence similarities. Thus, a large superfamily of structur-
ally related proteins that are all based on the Bet v 1 fold 
could be arranged into the Bet v 1 superfamily  [20] . The 
presence of Bet v-like molecules in Archaea such as  Aero-
pyrum pernix   [21]  indicates that the Bet v 1 fold origi-
nated in the very early stages of life on earth. Likewise, the 
origin of the cupin superfamily which harbors many al-
lergenic seed storage proteins, e.g., Ara h 1 from peanut, 
can be traced back to the Archaea based on available crys-
tal structures  [22] . AllFam (http://www.meduniwien.
ac.at/allfam/), the recently updated database of allergen 
families, is built around the membership of allergens to 
protein families  [23] . AllFam groups allergens according 
to the classification of the protein family database Pfam 
(http://pfam.xfam.org/). The September 2016 version of 
AllFam contains 1,018 allergens, 939 of which can be
assigned to 1 of 216 Pfam families. This number corre-
sponds to 1.3% of the 16,306 entries contained in Pfam 
v30.0, illustrating the highly limited distribution of aller-
gens into protein families.

  It is important to note that the vast majority of proteins 
in an allergen-containing family are nonallergenic. Cross-
reactivity occurs almost exclusively between allergens of 
the same family and spans the spectrum from high (e.g., 
profilins, polcalcins, and parvalbumins) to medium (e.g., 
PR-10 and nsLTPs) and low cross-reactivity (e.g., cupins, 
2S albumins, and lipocalins).

   Table 1  shows ribbon representations of selected aller-
gens from the protein superfamilies or families that con-
tain important allergens. Proteins with a long evolution-
ary past are distributed over a wide range of species, e.g., 
the members of the Bet v 1 family, the cupin superfamily, 
and the lipocalin family. Other types of allergens are more 
restricted in their distribution, e.g., parvalbumins are re-
stricted to fish, polcalcins to pollen, and β-expansins to 
grass pollen.

  The available crystal and solution structures of recom-
binant allergens illustrate the clinically observed cross-
reactivity even between distantly related allergens, as is 
the case for the kiwi allergen Act d 11 and also Bet v 1 
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 Table 1.  Structures of selected allergens from prominent allergen families

Prolamin superfamily: Nonspecific lipid transfer proteins and 2S albumins 
 

 

 

  

 

 

Peach Pru p 3 (2ALG)
nsLTP  

Hazelnut Cor a 8
(4XUW) nsLTP 

Peanut Ara h 2 (3OB4)
2S albumin   

Brazil nut Ber e 1
(2LVF) 2S albumin  

 
EF-hand family*: Parvalbumins and polcalcins 

   

Carp Cyp c 1 Cod Gad m 1 (2MBX) Iambsquatrers pollen
Che a 3 dimer (2OPO)

Timothy grass pollen
Phl p 7 dimer (1K9U)  

 
Cupin superfamily: vicilins and legumins 

 
 

 

 

Peanut Ara h 1 (3SMH)
trimer  

Soy Gly m 5 (1IPK)
trimer  

Peanut Ara h 3 (3C3V)
subunit of hexamer  

Soy Gly m 6 (1OD5)
subunit of hexamer  

 
Bet v 1 family 

 
Birch Bet v 1 (4A88) Celery Api g 1 (2BK0) Peanut Ara h 8 (4M9B) Kiwi Act d 11 (4IHR) 
 
Lipocalin family 

  
Cow Bos d 2 (1BJ7) 

Expansin and expansin-like family 

 

 

                 
 

 

 

Timothy grass pollen
Phl p 1 (1N10)  

Timothy grass pollen
Phl p 2 (1WHO), C-
terminal expansin domain   

Maize pollen Zea m 1
(2HCZ) 

Kiwi fruit Act d 5
(4X9U), N-terminal
expansin domain  

Horse Equ c 1 (1EW3) Dog Can f 2 (3L4R) Cockroach Per a  4
(3EBW) 

 Numbers in parentheses are Protein Data Bank (PDB; http://www.rcsb.org/pdb/home/home.do) accession 
numbers.* Bound calcium ions are shown as grey spheres. The ribbon models of the allergens were created with the 
molecular modeling system UCSF Chimera (http://www.cgl.ucsf.edu/chimera).
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 [24] . Structural information obtained from recombinant 
allergens together with IgE cross-reactivity data can be 
combined to predict conformational epitopes in the ab-
sence of allergen-antibody complexes  [25] . These pre-
dicted epitopes offer a useful starting point for introduc-
ing mutations or structural changes into known allergens 
in an effort to create allergen derivatives as candidate 
molecules for allergen-specific immunotherapy (AIT). 
Structural homologs of allergens can also be used as scaf-
folds for epitope grafting, whereby the individual surface 
areas of allergens are transplanted onto low or nonaller-
genic members of the same protein (super)family. Such 
chimeric molecules were produced by grafting surface 
areas of Bet v 1 onto either a structurally related protein 
from celery  [26]  or meadow rue  [27] . The norcoclaurine 
synthase from meadow rue was further used as a scaffold 
for presenting conformational epitopes of the soybean 
allergen Gly m 4, in an effort to characterize its IgE epi-
tope profile  [28] .

  Recombinant Allergens in Diagnostic Tests 

 Although diagnostic assays based on purified recom-
binant allergens are spreading fast, extracts from natural 
allergen sources are still in wide use. The composition of 
an allergenic extract strongly affects the results of any ex-
tract-based IgE assay. Commercially available extracts 
may lack important allergens or may vary considerably in 
their allergen composition, leading to false-negative test 
results for certain patients. Varying allergen composi-
tions and contents have been shown for skin prick test 
(SPT) solutions for the house dust mite  Dermatophagoi-
des pteronyssinus   [29] , the mould  Alternaria alternata  
 [30] , and hazelnut  [31]  as well as for sublingual allergen 
immunotherapy products for house dust mite, storage 
mite, and birch pollen  [32, 33] . At least for routine diag-
nostics, a process called spiking (i.e., the addition of re-
combinant allergens) has been used to improve the qual-
ity of allergenic extracts such as latex  [34] , hazelnut  [35] , 
and wasp venom  [36] . Moreover, recombinant allergens 
represent an alternative to natural allergens for allergy 
diagnosis when the natural allergen can only be isolated 
in low quantities from the original source  [37] .

  Molecule-based allergy diagnosis uses purified natural 
and recombinant allergens to elucidate the sensitization 
patterns of a patient at the molecular level  [38] . This pro-
cedure can (i) increase the diagnostic accuracy, (ii) distin-
guish genuine sensitization from sensitization due to 
cross-reactivity, (iii) help to assess the risk and type of al-

lergic reaction, and (iv) facilitate the selection of eligible 
patients and suitable allergens for allergen-specific im-
munotherapy  [39] . 

  Today, singleplex (1 assay/serum sample) and multi-
plex (multiple assays/serum sample) platforms for mea-
suring sIgE antibodies to allergens are available. Single-
plex assays allow testing for the presence of IgE specific 
to only those allergens that are indicated by the patient’s 
clinical history. In contrast, a multiplex platform allows 
the definition of an individual’s IgE response to the whole 
spectrum of allergens arrayed on a chip. Thus, the multi-
plex microarray approach often measures the presence of 
specific (s)IgE to allergens not indicated by the patient’s 
history. This results in the generation of IgE antibody 
data that can be inconsistent with the patient’s history 
and difficult to explain to the patient. 

  Screening large populations by allergen microarrays 
may also produce unexpected results. Panzner et al.  [40] 
 could detect sensitizations patterns to allergen sources 
which were not present in the study area. The microar-
rayed allergen approach which facilitated the measure-
ment of sIgE to a large number of allergenic proteins us-
ing a small volume of serum was first introduced in 2002 
by Hiller et al.  [41] . VBC Genomics developed the aller-
gen microarray technology which was then advanced into 
the commercial product ImmunoCAP Immuno Solid-
Phase Allergen Chip (ISAC) by ThermoFisher Scientific. 
Further development of the ISAC was funded by the Eu-
ropean Union (EU) project MeDALL to increase the orig-
inal number of allergens from 112 to 176, 127 of which 
are recombinant allergens  [42] . The ISAC makes it pos-
sible to semiquantitatively test for sensitization to 112 al-
lergens, providing, as is sometimes argued, too much in-
formation. Incorvaia et al.  [43]  caution against basing an 
allergy diagnosis on ISAC data alone.

  In addition to ThermoFisher Scientific’s ISAC, several 
other companies offer systems to test for the presence of 
allergen-specific IgE in patients’ sera. These companies 
include Siemens with their Immulite immunoassay sys-
tem and HYCOR with their HYTEC 288 Plus system. The 
technological advancements for in vitro allergy diagnosis 
do not stop there  [44] . Small-scale suspension arrays for 
a small number of purified recombinant and natural al-
lergens have been developed on the Luminex xMAP ®  
platform  [45]  and on the Becton Dickinson cytometric 
bead array system  [46] . Indoor Biotechnology produces 
an IgE quantitative binding array for the simultaneous 
detection and quantitative determination of total and al-
lergen-specific human IgE against 11 allergens. Kühne et 
al.  [47]  demonstrated, in a proof-of-concept study, that 
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multipeptide microarrays of the peanut allergen Ara h 1 
and all 3 subunits of the soybean allergen Gly m 5 could 
be used for large-scale screening of IgE epitopes of food 
allergens.

  In response to the need of allergologists for guidance 
and background information on allergen molecule-based 
diagnostics, the European Academy of Allergy and Clini-
cal Immunology (EAACI) has published the Molecular 
Allergology User’s Guide, compiled by a panel of 65 ex-

perts in the field  [48] . The EAACI regards the need to 
learn to interpret “allergomics” data as a challenge for 
practicing allergologists. The list of important allergenic 
molecules used in the microarray format is still incom-
plete. Recently, Becker et al.  [49]  demonstrated that Der 
p 23 was a new important house dust mite allergen which 
could contribute to the clarification of perennial allergic 
symptoms when the known major house dust mite aller-
gens Der p 1, Der p 2, and Der p 10 test negatively. This 

 Table 2.  Mutational strategies to produce recombinant hypoallergens

Strategy Definition Allergen source Molecule/s Ref.

Fragmentation The cDNA coding for the allergen is
fragmented into ≥2 parts;
the fragments may overlap;
the fragments are expressed individually

birch pollen Bet v 1 58, 59
cow dander Bos d 2 60
storage mite
L. destructor

Lep d 2 61

Timothy grass pollen Phl p 1 62
house dust mite
D. pteronyssinus

Der p 2 63

Oligomerization Two or more copies of the allergen-encoding
cDNA are linked by short oligonucleotide
spacers with an open reading frame;
the complete construct is expressed

birch pollen Bet v 1 64

Mosaics The allergen-encoding cDNA is fragmented into
several parts and the fragments are re-joined in
an order different from the original sequence;
if the sequence parts originate from >1 allergen,
the resulting protein is regarded as a hybrid mosaic

Timothy grass pollen Phl p 2 66
Phl p 1 67

birch pollen Bet v 1 68
cat Fel d 1 69

Chimeras/allergen 
hybrids

Chimeric proteins or hybrid proteins are created
by joining the genetic information of at least 2
different proteins;
such constructs may contain parts of or the
complete original proteins

house dust mite
D. pteronyssinus

Der p 1, Der p 2 71, 72

Timothy grass pollen Phl p 2, Phl p 6 73
Phl p 1, Phl p 2, 
Phl p 5, Phl p 6

74

yellowjacket, paper wasp Ves v 5, Pol a 5 75
honey bee Api m 1, Api m 2 

Api m 3
76

Japanese cedar Cry j 1, Cry j 2 77

Point mutations One or more nucleotide triplets coding for a
specific amino acid is/are altered to replace the
original amino acid at its exact position by an
amino acid with different physicochemical
characteristics

birch pollen Bet v 1 79, 101
Bet v 4 83

Brassica rapa pollen Bra r 1 84
carp Cyp c 1 82
P. judaica pollen Par j 1 85
latex
H. brasiliensis 

Hev b 6.02 86, 98

house dust mite
D. pteronyssinus

Der p 2 87

peanut Ara h 1, Ara h 2, 
Ara h 3

94 – 96

latex
H. brasiliensis 

Hev b 5 97

ryegrass pollen Lol p 5 99
egg white Gal d 1 100
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importance of Der p 23 was confirmed by a recent a study 
in Thailand, where 54% of 222 house dust mite-allergic 
individuals displayed Der p 23-specific IgE responses 
 [50] . The Ani s 11-like protein, Ani s 11.0201, a recently 
discovered new major allergen of the fish parasite  Anisa-
kis simplex  was shown to be recognized by 78% of the pa-
tients in the study group while 13.5% only detected the 
Ani s 11-like allergen  [51] . It is predicted that in vitro IgE 
assays based on allergenic extracts or purified allergens 
will coexist in clinical practice for quite a while. Hence, 
the EAACI suggests combining the results from SPTs, IgE 
assays using allergenic extracts, and molecular diagnosis 
with the clinical history of the patient, in order to provide 
the best possible allergy diagnosis for the patient.

  Vaccine Development 

 The first AIT trial was reported in 1911 by Leonard 
Noon  [52] ,   who injected grass pollen extracts subcutane-
ously into grass pollen-allergic patients and thus achieved 
a reduction in allergic symptoms. Since then, several clini-
cal trials have shown that AIT is able to modify allergic 
diseases and can produce long-lasting effects in treated pa-
tients  [53–55] . However, natural allergen extracts often 
show great variations in allergen content, may lack impor-
tant allergens, and may be contaminated with allergens 
from other sources  [29, 56, 57] . In contrast, recombinant 
technologies allow the production of well-characterized, 
noncontaminated vaccine components of known biologic 
activity. Moreover, genetic engineering allows the modifi-
cation of wild-type allergens to generate allergen deriva-
tives with reduced IgE reactivity (“hypoallergens”), a re-
duced risk of triggering undesirable allergic reactions
during the course of AIT, and a retained immunogenic ac-
tivity. Modifications that are used to destroy conforma-
tion-dependent B-cell epitopes, while conserving T-cell 
epitopes, include the fragmentation or fusion of molecules, 
point mutations and mutations, and the formation of chi-
meras and mosaics. Table 2 gives an overview of the most 
commonly applied methods of producing hypoallergens.

  Recombinant Allergen Fragments 
 The IgE antibody response to respiratory allergens is 

mainly directed to conformational epitopes. Hence, the 
disruption of the 3-dimensional structure by separately 
expressing fragments of the allergen can reduce or abolish 
the allergen’s IgE reactivity. The production of allergen-
derived fragments was first described for the major birch 
pollen allergen Bet v 1 by Vrtala et al.  [58, 59] . Two parts 

of Bet v 1, representing amino acid residues 1–74 and 75–
160, were expressed in  E. coli . The 2 recombinant frag-
ments showed almost no IgE-binding activity and exhib-
ited random coil conformation. Both fragments induced 
the proliferation of human Bet v 1-specific T cell clones. 
Two overlapping recombinant fragments (amino acid 
residues 1–131 and 81–172) of the respiratory allergen 
Bos d 2 from cow dander showed only a low level of re-
sidual IgE reactivity but vigorously stimulated Bos d 
2-specific T-cell clones  [60] . Six fragments of the major 
allergen Lep d 2 of the storage mite  Lepidoglyphus destruc-
tor  displayed only weak IgE binding, indicating that Lep 
d 2 does not possess dominant linear B-cell epitopes  [61] . 
When fragmentation of an allergen is taken to the ex-
treme, IgE haptens are the result. An expression cDNA 
library was constructed from a randomly fragmented 
cDNA coding for the major Timothy grass pollen allergen 
Phl p 1  [62] . An immunodominant 15mer peptide was 
identified with IgE from allergic patients; it bound IgE 
from 30% of grass pollen-allergic patients but did not in-
duce basophil histamine release in most patients. Two re-
combinant fragments of the major house dust mite aller-
gen Der p 2 (residues 1–53 and 54–129) displayed a >10-
fold reduction in allergenic activity, shown by a basophil 
activation assay and an SPT  [63] .

  Recombinant Allergen Oligomers 
 The concept of allergen oligomerization was realized 

by expressing 3 copies of the Bet v 1 cDNA linked by short 
oligonucleotide spacers with an open reading frame in  E. 
coli   [64] . The recombinant (r)Bet v 1 trimer contained Bet 
v 1-specific IgE and IgG as well as T-cell epitopes, but it 
exhibited a profoundly reduced allergenic activity. This 
could be explained by microaggregation, steric hindrance, 
and/or unfavorable charge interactions that hid some of 
the IgE epitopes required for effective cross-linking. The 
rBet v 1 trimer induced IgG antibodies in mice and rabbits 
that blocked human IgE binding to Bet v 1, Aln g 1, and 
Mal d 1. It was later found that the rBet v 1 trimer formed 
high-molecular-weight aggregates with an altered presen-
tation of IgE epitopes to effector cell-bound IgE  [65] .

  Recombinant Allergen Mosaics 
 Mosaic proteins created by genetic engineering are de-

fined as artificial recombinant proteins designed from a 
set of peptides that are found in the reference protein(s). 
If the peptides originate from  ≥ 2 proteins, then the result-
ing protein is regarded as a hybrid mosaic (see below). 
Mosaic allergens are constructed by reassembling the 
peptides derived from the sequence of the wild-type al-
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lergen to produce molecules that lack IgE binding due to 
changes in their 3-dimensional structure. The major al-
lergen Phl p 2 from Timothy grass pollen was converted 
into a mosaic by reassembling its peptides in a changed 
order  [66] .The recombinant mosaic protein had lost its 
IgE reactivity but induced high levels of IgG in mice and 
rabbits that inhibited IgE binding from allergic patients 
to group 2 allergens from Timothy grass and other grass 
species. Similarly, a rearranged mosaic of Phl p 1 dis-
played a reduction in IgE reactivity >85% and induced 
inhibitory IgG in immunized rabbits  [67] . Three recom-
binant mosaic proteins were derived from Bet v 1 and 
displayed a strongly reduced IgE reactivity and allergenic 
activity  [68] . The immunological properties of the de-

signed mosaic proteins cannot always be predicted. Only 
3 out of 7 mosaic proteins derived from the major cat al-
lergen Fel d 1 possessed the desired hypoallergenic char-
acteristics  [69] .

  Recombinant Allergen Chimeras/Allergen Hybrids 
 Chimeric proteins or hybrid proteins are created by 

joining the genetic information of at least 2 different pro-
teins. Such constructs may contain parts of or the com-
plete original proteins. Hybrid molecules are ideal for 
producing vaccine candidates for allergen sources that 
contain several important allergens, such as house dust 
mite, grass pollen, or insect venoms. Hybrid molecules 
increase the immunogenicity and reduce the number of 

 Table 3.  Recombinant allergens and recombinant allergen derivatives used in AIT studies

Allergen 
source

Vaccine component Molecule Intervention Clinical study
type

Patients, n Year Ref.

Birch pollen recombinant WT
protein, fragments,
dimer, and trimer

rBet v 1, 2 rBet v 1 
fragments, (rBet v1)2, 
(rBet v1)3 

SPT,
intradermal 
injections

Phase 0 29/30 2000 107

Birch pollen recombinant fragments 
and trimer

2 rBet v 1 fragments, 
(rBet v1)3

subcutaneous 
injection

Phase I safety
and tolerability

124
in 3 groups

2004 108

Birch pollen recombinant WT
protein

rBet v 1, nBet v 1,
birch pollen extract

subcutaneous 
injection

Phase II safety
and efficacy

134
in 4 groups

2008 111

Birch pollen recombinant WT
protein

rBet v 1 sublingual
tablet 

Phase II safety
and efficacy

485
in 4 groups

2015 112

Birch pollen recombinant WT
protein folding variant

rBet v 1-FV subcutaneous 
injection

Phase I safety 37
in 4 groups

2013 114

Birch pollen recombinant WT
protein folding variant

rBet v 1-FV,
birch pollen extract

subcutaneous 
injection

Phase II 51
in 2 groups

2015 115

Timothy grass 
pollen

recombinant WT
protein

mixture of rPhl p 1,
rPhl p 2, rPhl p 5a,
rPhl p 5b, rPhl p 6

subcutaneous 
injection

Phase I 62 2005 116

Timothy grass 
pollen

recombinant WT
protein

mixture of rPhl p 1,
rPhl p 2, rPhl p 5a,
rPhl p 5b, rPhl p 6

subcutaneous 
injection

Phase II 50
in 5 groups

2012 117

Timothy grass 
pollen

recombinant fusion
proteins of HBV surface
protein preS domain and 
allergen-derived B-cell 
epitope peptides

peptides derived from
Phl p 1, Phl 2, Phl p 5,
Phl p 6

subcutaneous 
injection

Phase II 71
in 4 groups

2016 118

Cat recombinant fusion
protein

rMAT-Fel d 1 intralymphatic 
injection

Phase I 20
in 2 groups

2012 121

Peanut recombinant modified
proteins

modified rAra h 1, 2,
and 3 in E. coli cells

rectal
administration

Phase 0 10 2013 122

Carp recombinant
hypoallergen

modified rCyp c 1 subcutaneous 
injection

Phase I/IIa 16 2016 124

 WT, wild-type; FV, folding variant; r, recombinant; n, natural.
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molecules that need to be produced and quality-checked 
 [70] . Asturias et al.  [71]  produced a hybrid molecule de-
rived from the house dust mite allergens Der p 1 and Der 
p 2 which had a significantly lower potency to induce re-
actions in SPTs than the individual allergens, and even 
induced higher T cell proliferation responses than an 
equimolar mixture of Der p 1 and Der p 2. Chen et al.  [72] 
 engineered hybrids from Der p 1 and Der p 2 and also 
replaced the cysteines with serines, showing that these 
molecules could be used safely for both tolerance and vac-
cination approaches. Linhart et al.  [73]  produced hybrid 
mosaic hypoallergens derived from the Timothy grass 
pollen allergens Phl p 2 and 6, and then, in another study 
 [74] , from Phl p 1, 2, 5, and 6. In both cases, the hybrid 
molecules displayed an increased immunogenicity by in-
ducing higher allergen-specific IgG titers in immunized 
animals than a mixture of the wild-type allergens. The 
homologous venom allergens Ves v 5 from the yellow-
jacket and Pol a 5 from the paper wasp have only low de-
grees of cross-reactivity. Hybrids containing different 
segments of these allergens can therefore be used to map 
discontinuous B-cell epitopes but have also been shown 
to be useful for immunotherapy due to their reduction in 
allergenicity  [75] . Karamloo et al.  [76]  could show that a 
hybrid consisting of fragmented sequences of the 3 bee 
venom major allergens Api m 1, 2, and 3 had preserved 
T-cell epitopes, had lost the B cell epitopes of all 3 aller-
gens, and possessed a highly reduced IgE cross-linking 
ability on human mast cells and basophils as well as a 
strongly reduced skin test reactivity. The 2 major aller-
gens of Japanese cedar ( Cryptomeria japonica ) pollen, 
Cry j 1 and Cry j 2, were expressed as a fusion protein and 
then conjugated to polyethylene glycol to improve their 
solubility and to create a safer vaccine  [77] . Treatment of 
mice and monkeys with this vaccine resulted in a signifi-
cant increase of Cry j 1-specific IgG. In general, allergen 
fusions allow the production of multiallergen vaccine 
components as a single molecule, thus facilitating their 
manufacture, purification, and characterization  [78] .

  Recombinant Allergens Modified by Mutations 
 Genetic engineering of genes coding for allergens re-

quires the knowledge of their B- and T-cell epitopes and, 
ideally, also their 3-dimensional structure. Thus, muta-
tions of an allergen sequence can be used to alter its func-
tions and immunological properties.

  Ferreira et al.  [79]  compared amino acid substitutions 
in several Bet v 1 isoallergens and homologs by an algo-
rithm developed to predict residues important for IgE 
binding. A Bet v 1 6-point mutant, developed by site-

directed mutagenesis, exhibited extremely low reactivity 
with serum IgE from birch pollen-allergic patients. Its 
ability to induce reactions in SPTs was significantly lower 
than for wild-type Bet v 1. In addition, the mutations had 
not influenced T cell recognition.

  The IgE recognition of allergenic members of the EF-
hand superfamily of calcium-binding proteins is influ-
enced by the presence of bound calcium, as has been 
shown for polcalcins  [80]  and the fish allergen parvalbu-
min  [81, 82] . The EF-hand calcium-binding domains 
were disrupted resulting in recombinant hypoallergens 
for the birch pollen allergen Bet v 4  [83] , the  Brassica  pol-
len allergen Bra r 1  [84] , and the carp allergen Cyp c 1 
 [82] . All 3 hypoallergens displayed reduced IgE-binding 
activities. Cyp c 1 was analyzed in an SPT and induced 
significantly fewer skin reactions than wild-type Cyp c 1. 
Mouse IgG raised by immunization with mutated Cyp c 
1 cross-reacted with parvalbumins from various fish spe-
cies and inhibited the binding of the IgE in fish-allergic 
patients to the wild-type allergen.

  Disulfide bonds stabilize the structure of several im-
portant allergen families and have therefore been a target 
of site-directed mutagenesis experiments. Hypoallergens 
displaying a decreased IgE-binding activity and a con-
served T cell reactivity were generated for the nonspe-
cific lipid transfer protein Par j 1 from  P. judaica  pollen 
 [85]  and the major latex allergen Hev b 6.02  [86] . Disul-
fide bonds present in the group 2 allergens of mites were 
also destroyed by site-directed mutagenesis to destabilize 
the antigenic structure and ablate IgE binding of Der p 2 
 [87] , Der f 2  [88] , and Lep d 2  [89, 90] .

  The introduction of point mutations in several peanut 
allergens was based on detailed studies of their IgE epi-
topes. For Ara h 1, 4 linear immunodominant IgE epitopes 
were identified by screening overlapping synthetic deka-
peptides  [91] . Likewise, 10 linear IgE epitopes were iden-
tified in the Ara h 2 sequence  [92] , and 4 in the Ara h 3 
sequence  [93] . Amino acids critical to each IgE epitope of 
these 3 peanut allergens were changed by site-directed 
mutagenesis  [94–96] . The resulting recombinant pro-
teins had a lower capacity to bind patients’ IgE but re-
tained the ability to stimulate T cell proliferation. Beezhold 
et al.  [97]  produced a recombinant latex hypoallergen 
Hev b 5 by simultaneously replacing the critical amino 
acid residues in 8 IgE epitopes to achieve a significantly 
reduced IgE-binding activity. Karisola et al.  [98]  pro-
duced 29 Hev b 6.02 mutants to identify 6 IgE-interacting 
residues in the sequence of this latex allergen. SPT reac-
tivity of the 6-residue mutant was completely abolished 
for all patients examined in the study.
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  Based on B- and T-cell epitope mapping studies and 
sequence comparison of group 5 allergens from different 
grasses, point mutations were introduced by site-directed 
mutagenesis in the highly conserved sequence domains 
of Lol p 5, the group 5 allergen from ryegrass  [99] . The 
authors succeeded in producing rLol p 5 mutants with 
low IgE-binding capacity and reduced allergenic activity, 
determined by basophil histamine release and SPTs in al-
lergic patients. Two amino acid positions in the egg-white 
allergen Gal d 1 have been identified as crucial for IgE 
binding as they contribute substantially to the structural 
integrity of the protein  [100] . Sequence and fold analysis 
of members of the Bet v 1 family identified a short se-
quence stretch in Bet v 1, susceptible for mutations to in-
duce an altered fold of the entire molecule  [101] . The re-
placement of 7 consecutive amino acids of Bet v 1 by the 
homologous Mal d 1 sequence resulted in the loss of the 
Bet v 1-like fold and a drastic reduction in binding IgE in 
birch pollen-allergic individuals.

  Recombinant Allergens in Clinical Studies 

 AIT is the only specific and disease-modifying treat-
ment of allergy. The difficulty in preparing safe and effec-
tive vaccines from natural allergen extracts represents the 
main limitation of AIT  [102] . Vaccines based on recom-
binant wild-type allergens or recombinant hypoallergen-
ic allergen derivatives offer the solution to this problem 
and have therefore entered into clinical testing more than 
a decade ago  [103] . Today, the structures of most of the 
important allergens are known and a wide array of re-
combinant hypoallergenic derivatives has been engi-
neered  [104] . As shown in Table 3, a number of these 
hypoallergenic molecules have already been tested in 
clinical trials  [105] . However, there is still a strong need 
for further research in the area of recombinant allergens 
and allergen derivatives to increase the efficacy and safety 
of AIT  [106] .

  Birch Pollen Allergy, Bet v 1 
 In 2000, Pauli et al.  [107]  compared the allergenic ac-

tivity of rBet v 1 with rBet v 1 fragments, an rBet v 1 dimer, 
and an rBet v 1 trimer. In SPTs on 29 patients and in in-
tradermal injections of 30 patients, the hypoallergenic de-
rivatives of Bet v 1 showed a reduced capacity to induce 
immediate-type skin reactions. The results of the first 
double-blind, placebo-controlled AIT study in 124 birch 
pollen-allergic patients were published by Niederberger 
et al.  [108]  in 2004. One preseasonal treatment course 

with the 2 rBet v 1 fragments or the rBet v 1 trimer in-
duced protective allergen-specific IgG antibodies and re-
sulted in the reduction of cutaneous sensitivity as well as 
an improvement of symptoms in actively treated patients. 
A significant reduction in the rise of allergen-specific IgE 
induced by seasonal pollen exposure was also observed. 
Analysis of the nasal secretions of 23/124 patients showed 
the induction of Bet v 1-specific IgG1, IgG2, and IgG4, 
and low IgA levels  [109] . The observed reduced nasal sen-
sitivity to natural Bet v 1 was significantly associated with 
the induced antibody levels. However, the increase in Bet 
v 1-specific IgG levels resulted in the improvement of 
birch pollen-associated OAS symptoms only in 7 of 25 
patients assessed after the vaccination with either the Bet 
v 1 fragments or Bet v 1 trimer  [110] . 

  In 2008, Pauli et al.  [111]  published the comparison of 
a recombinant wild-type Bet v 1 vaccine, a standard birch 
pollen extract and natural purified Bet v 1 in a random-
ized, double-blind, placebo-controlled trial of 134 pa-
tients. All groups demonstrated significant and equal im-
provements in symptoms, medication use, and skin test 
reactivity in 2 pollen seasons. Clinical improvements 
were accompanied by marked increases in Bet v 1-spe-
cific IgG1, IgG2, and IgG4 levels, which were highest in 
the rBet v 1-treated group. It was clearly shown that rBet 
v 1 could replace the birch pollen extract in the AIT treat-
ment of patients. Interestingly, the extract-based treat-
ment led to de novo induction of IgE against Bet v 2, the 
birch pollen profilin, in 3 patients. The safety and efficacy 
of rBet v 1 formulated as a sublingual tablet were assessed 
in a multicenter, double-blind, placebo-controlled study 
conducted in 482 birch pollen-allergic patients  [112] . The 
average adjusted symptom scores were significantly de-
creased in comparison to placebo in individuals receiving 
rBet v 1 tablets once daily for 5 months.

  A stable monomeric and hypoallergenic folding vari-
ant of Bet v 1 (rBet v 1-FV) was produced by changing the 
buffers of the chromatographic steps during the purifica-
tion of rBet v 1 expressed in  E. coli   [113] . Thirty adult 
birch pollen-allergic individuals were treated with rBet v 
1-FV for 10 weeks with weekly injections of the hypo-
allergen  [114] . Upon exposure to birch pollen in an envi-
ronmental exposure chamber, a significant decrease in 
the total symptom score was observed. No serious adverse 
events occurred. A preseasonal, randomized, controlled 
phase II study compared the effects of subcutaneous AIT 
with rBet v 1-FV or an established natural birch pollen 
extract  [115] . No statistical difference between rBet v 
1-FV and the pollen extract was observed regarding the 
beneficial effects of the AIT. rBet v 1-FV could even be 
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administered in higher doses than the native protein with 
no increase in adverse effects. 

  Grass Pollen Allergy, Phl p 1, 2, 5a, 5b, and 6 
 A study published in 2005 by Jutel et al.  [116]  deter-

mined the effectiveness of a mixture of 5 recombinant 
wild-type Timothy grass pollen allergens, rPhl p 1, rPhl p 
2, rPhl p 5a, rPhl p 5b, and rPhl p 6, in reducing symptoms 
and the need for symptomatic medications. This ran-
domized, double-blind, placebo-controlled study of sub-
cutaneous-injection immunotherapy showed a signifi-
cant improvement in the symptom medication score in 
subjects receiving the recombinant allergens compared to 
the placebo group. Conjunctival provocation showed a 
clear trend in favor of the active treatment which was 
based on the pronounced development of allergen-spe-
cific IgG1 and IgG4. A randomized, double-blind, place-
bo-controlled, dose-ranging study was performed in 50 
patients with a mixture of 5 recombinant  Phleum  pollen 
allergens  [117] . Eight patients experienced systemic reac-
tions grade 1 or 2, but none experienced grade 3 or 4. 
Hence, this first, dose-ranging safety study with Timothy 
grass pollen allergens showed no major side effects, even 
in the very high dose range.

  Very recently, a randomized, double-blind, placebo-
controlled AIT study of grass pollen allergy using a re-
combinant B-cell epitope-based vaccine was published 
 [118] . The vaccine, called BM32, contained recombinant 
fusion proteins that consisted of the hepatitis B virus 
(HBV) surface protein preS domain as an immunogenic 
carrier and peptides derived from the Timothy grass pol-
len allergens Phl p 1, 2, 5, and 6. Sixty-eight patients com-
pleted the trial. The total nasal symptom score decreased 
significantly, the total ocular symptom score and SPT re-
actions showed a dose-dependent decrease, and only a 
few grade 1 systemic reactions occurred. BM32 induced 
highly significant allergen-specific IgG but no IgE re-
sponses. As a side effect of this grass pollen AIT, but of 
high interest, Cornelius et al.  [119]  reported, in all of the 
7 recipients of the BM32 vaccine tested so far, the induc-
tion of HBV-neutralizing antibodies. Although the num-
ber of vaccine recipients evaluated was small and no titers 
were determined, this study showed that the preS domain 
alone could induce HBV-neutralizing antibodies  [120] .

  Cat Allergy, Fel d 1 
 The recombinant major cat dander allergen Fel d 1 was 

linked to a cell membrane translocation sequence and to 
a truncated invariant chain for targeting the MHC class 
II pathway, creating the modular antigen transporter 

(MAT)-Fel d 1 fusion protein  [121] . In a randomized, 
double-blind, placebo-controlled trial, intralymphatic 
immunotherapy with rMAT-Fel d 1 was performed on 20 
patients. After only 3 intralymphatic injections of rMAT-
Fel d 1 within 2 months, nasal tolerance increased up to 
74-fold and cat-dander-specific IgG4 was increased 5.7-
fold. This first-in-human clinical study of intralymphatic 
immunotherapy was regarded as safe and efficient in in-
ducing allergen tolerance.

  Peanut Allergy, Ara h 1, 2, and 3 
 cDNAs coding for 3 recombinant peanut allergens 

(Ara h 1, Ara h 2, and Ara h 3) were modified to disrupt 
common IgE-binding sites  [94, 95] . The modified recom-
binant allergens were separately expressed in  E. coli , and 
remained inside the cells when these were subsequently 
killed using heat and phenol  [122] . The 3 resulting cell 
suspensions were combined to form the rectally admin-
istered vaccine EMP-123 with the goal of inducing toler-
ance to the dominant peanut allergens. Ten peanut-aller-
gic individuals received escalating weekly doses over 10 
weeks, followed by 3 biweekly maximal doses. The rectal 
administration of EMP-123 resulted in mild rectal symp-
toms in 1 patient and adverse reactions in 5 patients, in-
cluding 2 anaphylactic reactions. Due to the unexpected 
frequency and intensity of these adverse reactions, to 
date, no further development of the vaccine has been re-
ported by the company Allertein.

  Peach Allergy, Pru p 3 
 The EU-funded FAST (Food Allergy Specific Immu-

notherapy) project was aimed at developing a safe and 
effective subcutaneous immunotherapy for persistent 
and severe allergy to fish and peach  [123] . For peach, 
FAST focused on its major allergen, the nonspecific lipid-
transfer protein Pru p 3. Two rPru p 3 mutants (substitu-
tions of surface-exposed amino acids important for IgE 
binding and the destruction of disulfide bridges), 2 chem-
ically modified rPru p 3 molecules (reduction/alkylation 
and glutaraldehyde treatment) and a naturally occurring 
hypoallergen, rFra a 3 (from strawberry) were prepared 
and extensively tested. Of these 5 candidate molecules, 2 
failed on hypoallergenicity, 2 on immunogenicity and 
stability, and 1 on solubility  [124] . Subsequently, 2 tri-
meric molecules were designed with all 8 cysteines re-
placed by serines, 1 heat-treated wild-type rPru p 3 was 
prepared, and 2 mutants were produced with 4 (i.e., 8 in 
all) surface-exposed amino acids residues exchanged 
 [124] . Hypoallergenicity could be achieved at the cost of 
immunogenicity and stability. From these results, the au-

D
ow

nl
oa

de
d 

by
: 

80
.8

2.
77

.8
3 

- 
5/

8/
20

17
 7

:3
8:

34
 A

M



 Recombinant Allergens  Int Arch Allergy Immunol 2017;172:187–202 
DOI: 10.1159/000464104

197

thors concluded that Pru p 3 is a molecule that loses its 
immunogenicity when its structure is altered, and they 
decided to abandon its further clinical development. 

  Fish Allergy, Cyp c 1 
 For the development of immunotherapy for fish al-

lergy, the FAST project focused on the major allergen 
from carp, the highly cross-reactive parvalbumin Cyp c 1 
 [123] . Hypoallergenic mutants of Cyp c 1 had been previ-
ously produced by mutating the 2 functional calcium-
binding sites which are responsible for most of the IgE 
binding of the molecule  [81, 82] . The FAST project se-
lected the mutant Cyp c 1, in which both calcium-binding 
sites had been destroyed for the development of a hypo-
allergenic vaccine for fish AIT. Purified mutated rCyp c 1 
behaved as a stable and folded molecule that had retained 
its immunogenicity and displayed, on average, a 1,000-
fold reduction of IgE binding when tested with sera from 
26 fish-allergic patients  [125] . Mutated rCyp c 1 was test-
ed in Denmark in 2013/2014 in a first-in-human, ran-
domized, double-blind, placebo-controlled clinical study 
involving 16 fish-allergic subjects  [124] . Due to the low 
level of side effects and the positive immunological re-
sponse, a multicenter clinical trial in 9 clinical centers in 
6 countries was initiated in October 2015.

  Recombinant Chimeric Allergens for Monitoring 

Clinical Studies 

 The determination of conformational antibody epi-
topes on allergens is still a challenge, yet of high interest 
for monitoring the development of allergen-specific anti-
body repertoires during AIT. Epitope grafting from aller-
gens onto scaffolds of low-allergenic homologs is an ele-
gant approach to a solution for this problem. Four dis-
tinct areas of Bet v 1, representing in total around 80% of 
its surface, were separately grafted onto the scaffold of its 
celery homolog Api g 1 to yield the chimeras Api-Bet-1–4 
 [26] . Sera from 64 birch pollen-allergic patients were test-
ed for the presence of chimera-specific IgE. The highly 
patient-specific IgE recognition profiles revealed that the 
IgE response to Bet v 1 is polyclonal and that the epitopes 
are spread across the entire Bet v 1 surface. The 4 Api-Bet 
chimeras were then applied to monitor the development 
of the Bet v 1-specific IgE, IgG1, and IgG4 repertoires in 
narrow time intervals during 3 years of AIT in 11 subjects 
 [126] . In the majority of patients, Bet v 1-specific IgE lev-
els increased during the early phase of treatment, fol-
lowed by a gradual decrease. The overall IgE epitope di-

versity during AIT remained constant. IgE also showed 
the highest epitope diversity among the immunoglobulin 
classes investigated. All patients had Bet v 1-specific IgG4, 
and 7 patients had Bet v 1-specific IgG1. IgE, IgG1, and 
IgG4 recognized different epitope profiles. Notably, the 
epitopes represented by the chimera Api-Bet-3 (the C-
terminus of Bet v 1 plus surrounding residues) played a 
prominent role in the recognition of the allergen by all 
studied immunoglobulin classes.

  Conclusions 

 Recombinant allergens have considerably advanced 
our knowledge of the immune mechanisms of allergic 
diseases as well as vastly enriched our toolbox for diagno-
sis and therapy. While recombinant allergens have con-
tributed significantly to allergen standardization, diagno-
sis, structural biology, and epitope mapping, it is still an 
open issue whether and when recombinant AIT will re-
place extract-based immunotherapy. There are 2 main as-
pects to consider, the regulatory aspects of AIT and the 
quality of the recombinant allergens. The European Com-
munity has not yet produced regulations for AIT with 
recombinant allergens that would be compelling for all 
member states. Bonini  [127]  states in his 2012 article that 
the guidelines produced by the European Medicines 
Agency, such as that on the production and quality issues 
of allergen products (EMEA/CHMP/BWP/304831/2007), 
are only for orientation. Likewise, position papers pub-
lished by expert panels or scientific societies, such as the 
EAACI, are of no regulatory value. In addition, recombi-
nant allergens and hypoallergens will remain unavailable 
in many countries due to the strict regulatory criteria that 
need to be met. Hence, it is unlikely that novel allergenic 
molecules will be available in the near future for use as in 
vivo clinical diagnostic and immunotherapy reagents.

  On the other hand, the recombinant production of 
certain allergens still needs to overcome technological 
hurdles. The EU-funded CREATE project, which aimed 
to evaluate the use of recombinant allergens as reference 
material, showed that some recombinant allergens only 
possess a mean of 50–80% of the IgE-binding capacity of 
their natural counterparts  [128] . The absence of post-
translational modifications could result in a decrease of 
the IgE-binding capacity, as was shown for the peanut al-
lergen Ara h 2  [129] . A recent study on the expression of 
Ara h 1 and Ara h 2 in the chloroplasts of the unicellular 
eukaryotic green alga  Chlamydomonas reinhardtii  found 
that even the algal-produced recombinant allergens had 
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a reduced affinity for IgE compared to the native proteins 
 [130] . Hypoallergenic variants of Ara h 1, 2, and 3 still 
produced frequent adverse side effects when adminis-
tered to patients, resulting in the termination of any fur-
ther development of a therapy for peanut allergy based on 
recombinant allergens  [122] . Two companies have turned 
to natural peanut proteins in their peanut allergy drug 
formulations, and they have tested an oral peanut protein 
formulation and an epicutaneous patch that delivered 
peanut proteins via the skin  [131] . For both drugs, desen-
sitization was lost within weeks if patients terminated the 
treatment. Nevertheless, as the technology of the produc-
tion of recombinant proteins is refined, they will become 
an increasingly attractive alternative to native allergens 
for allergy diagnostics and immunotherapy.
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