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The house dust mite (HDM) is a major perennial allergen
source and a significant cause of allergic rhinitis and allergic
asthma. However, awareness of the condition remains
generally low. This review assesses the links between
exposure to HDM, development of the allergic response, and
pathologic consequences in patients with respiratory allergic
diseases. We investigate the epidemiology of HDM allergy to
explore the interaction between mites and human subjects at
the population, individual, and molecular levels. Core and
recent publications were identified by using ‘‘house dust
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mite’’ as a key search term to evaluate the current
knowledge of HDM epidemiology and pathophysiology.
Prevalence data for HDM allergen sensitization vary from
65 to 130 million persons in the general population
worldwide to as many as 50% among asthmatic patients.
Heterogeneity of populations, terminology, and end points in
the literature confound estimates, indicating the need for
greater standardization in epidemiologic research. Exposure
to allergens depends on multiple ecological strata, including
climate and mite microhabitats within the domestic
environment, with the latter providing opportunity for
intervention measures to reduce allergen load. Inhaled mite
aeroallergens are unusually virulent: they are able to activate
both the adaptive and innate immune responses, potentially
offering new avenues for intervention. The role of HDM
allergens is crucial in the development of allergic rhinitis and
asthma, but the translation of silent sensitization into
symptomatic disease is still incompletely understood.
Improved understanding of HDMs, their allergens, and their
microhabitats will enable development of more effective
outcomes for patients with HDM allergy. (J Allergy Clin
Immunol 2015;136:38-48.)

Key words: Allergen, house dust mite, allergy, allergic asthma,
allergic rhinitis, respiratory allergic disease, inflammation

Discuss this article on the JACI Journal Club blog: www.jaci-
online.blogspot.com.
The house dust mite (HDM) is globally ubiquitous in
human habitats and a significant factor underlying allergic
rhinitis and allergic asthma. These features make it one of the
most important sources of indoor allergens.1,2 Sensitization to
mite allergens in the first years of life has a significant
clinical effect on lung function in pediatric populations with
wheeze and associates in the long term with poorer clinical
outcomes in respiratory health.3 This might explain why the
approach advocated by current guidelines for allergic rhinitis
(Allergic Rhinitis and its Impact on Asthma)4 and allergic
asthma (Global Initiative for Asthma)5 classifies disease based
on the severity of symptoms, often leaving the underlying
allergic cause unaddressed. Although comprehensive reviews
of HDM allergy exist, consideration of the link between
exposure, allergenicity, and the pathologic consequences for
the entire airway has yet to be thoroughly explored. This
review seeks to provide a complete picture of the epidemi-
ology of HDM allergy and the effect of HDM allergens on
the human immune system.
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Abbreviation used
HDM: H
ouse dust mite
EPIDEMIOLOGY: SCOPING THE PROBLEM
Throughout the published literature, studies frequently cite the

high prevalence ofHDMallergy,6,7 yet an accurate global estimate
has proved elusive. A comprehensive thesis of HDM allergy sug-
gests that 1% to 2% of the world’s population might be affected,
which is equivalent to 65 to 130 million persons.8 Geographic
variation complicates the picture: although HDM allergy is
consistently found in Western nations, variation between coun-
tries, regions, and even individual test centers is significant.9

One fundamental issue is the diversity of terminology and end
points used in the literature, which can obscure the relationship
between silent sensitization to HDM allergens and clinical
disease. When evaluating data, a clear distinction must be made
between epidemiologic studies conducted across a population
selected at random and studies targeting sensitized symptomatic
subjects selected from a group with diagnosed allergy.10

Focusing specifically on the proportion of patients with HDM
allergen sensitization and rhinitis, asthma, or both, interpopulation
differences are high. Among patients from 15 developed countries
in the European Community Respiratory Health Survey I, the
mean prevalence of sensitization to HDM was 21.7%.9 Among
Latino women in the United States of various ages, the prevalence
of sensitization to Dermatophagoides pteronyssinuswas 37% and
to D farinae was 34%,11 whereas the prevalence was greater than
80% in a pediatric study in Taiwan.12 Given that study groups can
be sampled from across continents, countries, ethnic groups,
sexes, and/or age ranges, the heterogeneity of populations might
confound potential comparisons of observed differences.

Significant differences exist not only between surveys but also
within them. The European Community Respiratory Health
Survey provided an opportunity to explore data from 13,558
subjects from 16 countries, focusing on the relationship among
sensitization, allergy, and asthma.13 A meta-analysis from this
study reported a high overall prevalence for asthma with HDM
sensitization (21%, r5 0.64) but with significant interpopulation
heterogeneity (P < .001). The proportion of asthma attributed to
any allergen had a wide range (4% to 61%) and was highly
dependent on the diagnostic technique used.13 This suggests
that discrepancies in the use of diagnostic tools can confound
epidemiologic studies.9 The Environmental Health Risks in
European Birth Cohorts project cited a lack of common defini-
tions of exposure, health variables, and monitoring as critically
limiting factors for establishing the prevalence of HDM allergy.14
FACTORS INFLUENCING EXPOSURE,

SENSITIZATION, AND ALLERGY TO HDM

Allergen exposure and sensitization
The prevalence of HDMallergy is intricately linked to exposure

to the mite itself. The German Multicentre Allergy Study, which
followed newborn children (n5 1314) through the first 3 years of
life, found a cumulative increase in the development of allergy
with increasing exposure to the major HDM allergens Der p 1 and
Der f 1.15 This reached a peak level of 5.5% with exposure to
greater than 10 mg/g in carpet dust in children from families
with a known history of allergy; the corresponding prevalence
for those without a family history was 3%. At levels of less than
0.1 mg/g, the risk of allergy was low.15 Although sensitization is
linked to allergen exposure, the correlation does not follow a linear
pattern. A study showed a lower prevalence of mite atopy and
asthma in the highest and lowest quintiles of exposure in children
aged 0 to 5 years and also in the first 18months from birth, with the
highest prevalence observed at 3.5 to 23.4 m/g.16 Other studies
have also reported a bell-shaped dose-response curve for HDM
exposure versus sensitization.17-19 The mechanism of the apparent
protective effect of high exposure levels remains unclear. It has
been proposed that it might be similar to the ‘‘high dose tolerance’’
reported for cat allergen20; however, reports of high dose tolerance
for aeroallergens are inconsistent between studies.16 Parental
history of allergy and asthma has been reported to influence the
relationship between HDM exposure and atopy; exposure to
greater than 10mg/g was associated with a decreased risk of atopic
asthma in children with a parental history but with an increased
risk in those without.21 At present, this threshold is not well
defined in the literature and is likely to be compounded by the
presence of other allergens and some predisposing factors, such
as viral infections, exposure to chemicals (eg, formaldehyde),
individual susceptibility, and use of medication.22,23 Studies
seeking to quantify a level of exposure that can be considered
‘‘safe’’ suggest that levels of less than 2 mg/g of HDM allergens
are the maximum level for the primary prevention of sensitization
in atopic children and young adults.24,25

A study of HDM sensitization during the first 3 years of life
found that sensitization was low during infancy (0.5%), with an
increase during the second (1.4%) and third (1.9%) years of life,
and concluded that interventions aimed at primary prevention of
sensitization should be introduced as early as possible, preferably
during infancy.15

The quantitative relationship between exposure to HDM
allergens and symptoms in asthmatic patients is complex and,
similar to sensitization, influenced by environmental and genetic
factors. Many asthmatic patients are sensitized to more than 1
allergen, which makes determination of the contribution of a
specific allergen to airway inflammation difficult.26 Although a
clear threshold for provocation of asthma symptoms has not
been clearly defined, symptoms are likely to be more severe
with increasing allergen exposure.26

Assessing HDM exposure presents a challenge to the physi-
cian. In the clinical trial setting exposure has been expressed as
themaximum level found in the home, the percentage of sites with
greater than 2 mg/g, and the mean value at the site with the
maximum level.27 However, a recent practice parameter on the
environmental assessment and exposure control of HDM
recommends the use of a hygrometer to estimate the amount of
moisture available for propagation of HDM in the home and
contains questions on home characteristics to assess the probabi-
lity of HDM exposure.28 This complexity could explain the
relatively low predictive value of questionnaires in diagnosing
sensitized subjects in the general population compared with other
allergens (ie, 22% vs 64%, HDM vs pollen).29 Moreover,
HDM populations can also fluctuate seasonally,30,31 exhibiting
corresponding patterns of symptomatic response in patients.32
Environmental factors
The key species of HDM involved in allergy are shown in

Table I,8 along with a corresponding median value of the climatic



TABLE I. Climatic features associated with the global distribution of 11 major HDM species

Species

Elevation,

median

height (m)

Rainfall,

per month

(mm)

Temperature (8C) Relative humidity (%)

Relative frequency and

locations present

Maximum

median

temperature

Minimum

median

temperature

In the

morning,

09 AM

In the

afternoon,

15 PM

Dermatophagoides

pteronyssinus

46 66.0 18.4 8.9 82.0 65.0 85% Occurrence; most frequent

species recorded; present at all

localities representing extremes of

altitude and latitude and at the

wettest locality

Dermatophagoides

farinae

45 66.0 18.9 9.4 82.0 64.0 47% Occurrence; second most

frequently occurring species

worldwide; most frequently found

in the United States, Japan, and

continental Europe; considerably

rarer than D pteronyssinus in

Australia, the United Kingdom,

and Latin America

Euroglyphus maynei 61 62.5 17.2 7.8 82.0 63.0 27% Occurrence; third most frequent

species globally; most records are

from coastal localities or areas of

high rainfall; also found at high

latitudes in conditions of low

temperature and rainfall

Blomia tropicalis 34 96.5 30.0 20.3 85.0 66.7 20% Occurrence; predominantly

found in the tropics at low

elevations that are hot and wet,

with high summer rainfall (Asia,

southern United States, and Latin

America)

Chortoglyphus

arcuatus

41 77.0 17.5 8.1 84.5 64.8 17% Occurrence; found at localities

with a high seasonal variation in

rainfall, some of which have most

rain during the winter months

Lepidoglyphus

destructor

65 56.0 16.7 6.7 82.0 65.0 16% Occurrence; found at high

latitudes with low temperatures

and rainfall (low seasonal

variation) in both the Northern and

Southern Hemispheres

Glycophagus

domesticus

45 56.0 16.1 6.3 83.0 64.0 14% Occurrence; found at high

latitudes with low temperatures

and rainfall, with little seasonal

variation in rainfall; mostly

Europe, Russia, and Japan; not

recorded in North America,

Africa, Australia, or Southeast

Asia

Gohieria fusca 95 53.0 16.5 6.3 83.0 64.8 9% Occurrence; found at relatively

high elevation (mostly Europe but

has been recorded in the tropics)

Hirstia

domicola

20 98.0 21.1 11.4 83.0 60.5 8% Occurrence; mainly found at

Northern Hemisphere locations

with strong seasonal variation in

temperature and rainfall (mainly

Japan and Southeast Asia)

Dermatophagoides

microceras

94 58.0 15.9 5.9 84.0 64.5 4% Occurrence, although

misidentification likely means that

species is more abundant; recorded

in the Northern Hemisphere only,

mostly at high latitudes, with the

exception of localities in India and

Malaysia

(Continued)
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TABLE I. (Continued)

Species

Elevation,

median

height (m)

Rainfall,

per month

(mm)

Temperature (8C) Relative humidity (%)

Relative frequency and

locations present

Maximum

median

temperature

Minimum

median

temperature

In the

morning,

09 AM

In the

afternoon,

15 PM

Malayoglyphus

intermedius

33 137.0 31.1 22.8 83.0 68.0 4% Occurrence; mainly found in the

Northern Hemisphere in tropical,

hot, and very wet places at low

elevations with little annual

temperature variation (tropical and

subtropical Asia)

These data were compiled for 11 major HDM species by using distribution data from a database collation of 970 records from 812 named locations across 86 countries, as

described by Colloff.8 For each of the locations, climatic data were recorded for elevation, monthly rainfall, monthly temperature (minimum and maximum), and mean percentage

of relative humidity in the morning and afternoon. Monthly values for the Southern Hemisphere were moved by 6 months to create parity for summer and winter data. In the case of

missing data for any location, proxy data from nearby localities were used; data for elevation are taken almost entirely from the Northern Hemisphere. The computer program

CLIMEX was used to generate data for the distribution of dust mite species correlated with climatic data. The table shows the median values for each variable for each of the major

HDM species.
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variants with which they associate. Humidity is a critical factor
for mite prevalence both inside and outside the home, with higher
concentrations found in damp homes.33 Relative humidity
increases quickly after a bed is occupied, which might explain
why HDMs are more likely to be found in beds than carpets,
with a ratio of 2.7 (range, 0.6-5.9; mean, 1884 mites/g of dust
found in beds vs 601 mites/g in carpets).8 Factors shown to
decrease HDM concentrations in the home include use of newer
mattresses and carpets,33 the presence of hard floors as opposed
to carpets,34 choice of mattress type,35,36 regular mattress
replacement,37 use of central heating,37 living in a flat as opposed
to a house,37 the presence of an open fireplace,38 and bedrooms
situated on a higher floor.38 These provide opportunities for
intervention at the domestic level that could reduce the HDM
concentration.

Domestic cleaning offers a cost-effective universal approach,
and evidence that HDM populations are reduced by cleaning is
longstanding in the literature. An early study found 1.4 times
more HDM allergen in beds where the housekeeping was poor,39

whereas using chlorine bleach,40 maintaining good ventilation,37

and washing textiles regularly with a detergent at higher temper-
atures41 appear to remove most HDMs. Focusing on the bed area
as a target for allergen reduction, the use of mite-impermeable
mattress covers,14,42 daily vacuuming of mattresses,43,44 and
choice of a more powerful model of vacuum cleaner38,45 have
been shown to reduce HDM concentrations. Although environ-
mental prophylactic interventions designed to reduce allergen
exposure are intuitively sensible, their effect on clinical outcomes
remains controversial.46 A recent meta-analysis of randomized
studies found no effect of chemical and physical methods to
reduce exposure to HDM allergens on asthma symptoms,47 and
a systematic review found that use of HDM-impermeable bedding
was unlikely to be effective in reducing rhinitis symptoms;
however, use of acaricides and extensive bedroom-based
environmental control measures might provide some benefit.48

Recent findings challenge the historic assumption that the
primary site of HDM exposure is the domestic bedroom,
observing that public transport, daily human interaction, or both
can also provide opportunities for exposure.49 However, exposure
outside the home is the exception rather than the rule and might
explain unusual patterns of allergy development. One example
might be the Iceland paradox, in which 9% of the population
had positive test results for sensitization toHDMdespite domestic
tests showing a near absence of the mite.50 An alternative
explanation might be cross-reactivity between allergens from
HDM with those from other species, such as shellfish, shrimp,
or both.51,52 Some mite allergenic proteins are widely cross-
reactive among invertebrates, and HDM allergens are suspected
to cause or worsen food allergy to snails and crustaceans.53 There
have been reports of symptoms in patients with HDM allergy
after consumption of shrimp52 and snails54,55 and skin test
cross-reactivity between shellfish and HDM.56 Group 10
allergens (tropomyosins) are believed to be the principal
panallergen responsible for cross-reactivity with other
invertebrates53,57; Der p 10 shows significant homology with
the shrimp tropomyosin Pen a 1.58 HDM allergens that are
thought to be responsible for snail cross-reactivity include also
Der p 4, Der p 5, Der p 7, and hemocyanin.53,57
THE HDM LIFECYCLE: IMPLICATIONS FOR

ALLERGEN CONTROL
The 2 key species of HDM in allergy research areDermatopha-

goides pteronyssinus and Dermatophagoides farinae. The
Dermatophagoides genus is probably the most researched of all
the HDMs, although species dominance varies geographically,
suggesting specialist adaptation.59 All HDM species reach
adulthood within 3 to 4 weeks. Once mature, adult mites have a
life expectancy of between 4 and 6 weeks, during which time
females can lay between 40 and 80 eggs. With this fast
reproductive turnover, mites can colonize a new home within a
year.8

Dust provides a detrital habitat with 3 key macromolecules
derived from organic debris: keratin (human skin scales),
cellulose (textile fibers), and chitin (fungal hyphae and mite
cuticles). The availability of these substances affects the success
of the mite, with keratin, the primary food source, being most
important. However, the HDM diet also extends to fibers,
bacteria, pollen, fungal mycelia, and the spores of micro-
organisms. During digestion, disassociated digestive cells from
the gut wall bind to ingested food en route through the lumen.
These cells contain allergenic digestive enzymes that are excreted
in the fecal pellets.8

Human and HDM populations are inextricably linked because
human skin influences not only diet but also, indirectly, the HDM
habitat. Hard surfaces increase the risk of skin desiccation and are



TABLE II. Summary of key HDM allergen groups and action on the human immune systems

Mite

allergen

group

Identified

allergens Molecular category Effect on the immune system* Quantitative allergenicityy

1 Der p 1, Der f 1, Der m 1,

Der s 1, Eur m 1, Blo t 1,

Pso o 1, Sar s 1

Cysteine protease 1. Production of cytokines, chemokines,

collagen, pro-TH2, and growth factor

2. Promotion of TH2 polarization and

inflammatory cell recruitment

3. Increased permeability through

disruption of epithelial tight junctions

4. Eosinophil and mast cell degranulation

5. Fibroblast maturation

6. Smooth muscle proliferation

7. Downregulation of IDO and TH1

polarization

8. Airway remodeling

9. Cleavage of a1-antitrypsin and collectins

in the airways

10. Cleavage of occluding and ZO-1 in

airway epithelial cells

11. Cleavage of CD40 and DC-SIGN in DCs

12. TGF-b activation through LAP cleavage

13. Unknown cleavage in airway

epithelial cells, DCs, eosinophils,

basophils, and keratinocytes

14. Binding to MR on DCs through group 1

glycosylations

Dominant (Dermatophagoides

species)

Unknown (Blomia species)

80% IgE binding frequency

2 Der p 2, Der f 2, Der s 2,

Eur m 2, Lep d 2, Tyr p 2,

Gly d 2, Aca s 2, Pso o 2,

Ale o 2, Sui m 2, Blo t 2

MD-2–like lipid-binding

protein
1. Molecular mimicry of MD-2

2. TLR2 and TLR4 activation on DCs,

airway epithelium, and airway smooth

muscle cells

4. Binding to CLR on DCs through

group 2 glycosylations

5. Cytokine/chemokine production to

promote TH2 polarization and

inflammatory cell recruitment

6. Downregulation of IDO

7. TNF-a release

Dominant (Dermatophagoides

species)

Low (Blomia species)

80% IgE binding frequency

3 Der p 3, Der f 3, Der s 3,

Eur m 3, Blo t 3, Sar s 3,

Gly d 3, Lep d 3

Trypsin-like serine

protease
1. Production of cytokines, chemokines,

collagen, and growth factor

2. Increased permeability through disruption

of epithelial tight junctions

3. Eosinophil and mast cell degranulation

4. Fibroblast maturation

5. Smooth muscle proliferation

6. PAR-2 activation in airway epithelial

cells and keratinocytes

7. Cleavage of occludin and ZO-1 in

airway epithelial cells

8. Promotion of TH2 polarization and

inflammatory cell recruitment

9. Airway remodeling and increase

in airway inflammation

16% to 100% IgE binding

frequency

4 Der p 4, Der f 4,

Eur m 4, Blo t 4

Amylase Unknown Midpotency (Dermatophagoides

species)

Low (Blomia species)

40% to 46% IgE binding

frequency

5 Der p 5, Blo t 5, Der f 5,

Gly d 5, Lep d 5

Lipid-binding

protein
1. Might bind hydrophobic ligands with

the effect of stimulating the innate

immune system

2. Possible role for TLR activation

3. Cytokine/chemokine production to

promote TH2 polarization and

inflammatory cell recruitment

Midpotency (Dermatophagoides

species)

Dominant (Blomia species)

50% to 70% IgE binding

frequency

(Continued)
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TABLE II. (Continued)

Mite

allergen

group

Identified

allergens Molecular category Effect on the immune system* Quantitative allergenicityy
6 Der p 6, Der f 6, Blo t 6 Chymotrypsin-like

serine protease
1. Production of cytokines, chemokines,

collagen, and growth factor

2. TH2 polarization and inflammatory

cell recruitment

3. Increased permeability through disruption

of epithelial tight junctions

4. Eosinophil and mast cell degranulation

5. Fibroblast maturation

6. Smooth muscle proliferation

7. PAR-2 activation in keratinocytes

8. Cleavage of occludin and ZO-1 in airway

epithelial cells

40% IgE binding frequency

7 Der p 7, Der f 7, Lep d 7,

Gly d 7, Blo t 7

Lipid-binding

protein
1. Might be involved in activation of TLRs

2. Might be involved in polarization of

TH2 cells

3. Might act as a ligand for other bacterial

ligands; structural similarity to

LPS-binding protein

4. Might interact with the innate

immune system

Midpotency (Dermatophagoides

species)

Uncertain (Blomia species)

50% IgE binding frequency

8 Der p 8, Pso o 8, Sar s 8,

Gly d 8, Lep d 8, Blo t 8

Glutathione-S-transferase Unknown 20% to 40% IgE binding

frequency

9 Der p 9, Der f 9, Blo t 9 Collagenolytic-like

serine protease
1. Increased permeability through

disruption of epithelial tight junctions

2. Production of cytokines, chemokines,

collagen, and growth factor

3. Smooth muscle proliferation

4. Eosinophil and mast cell degranulation

5. Airway remodeling

6. TH2 polarization and inflammatory

cell recruitment

7. PAR-2 activation in airways epithelial

cells and keratinocytes

8. Cleavage of occludin and ZO-1 in

epithelial cells

90% IgE binding frequency

10 Der p 10, Der f 10, Blo t 10,

Lep d 10, Pso o 10,

Tyr p 10, Gly d 10, Der g 10

Tropomyosin Unknown Low (Dermatophagoides species)

Low (Blomia species)

50% to 95% IgE binding

frequency

11 Der p 11, Der f 11, Blo t 11,

Pso o 11, Sar s 11

Paramyosin Unknown 80% IgE binding frequency

12 Der p 12, Blo t 12, Lep d 12 Chitinase Unknown 50% IgE binding frequency

13 Der f 13, Blo t 13, Lep d 13,

Aca s 13, Try p 13, Gly d 13

Lipocalin Might be involved in the activation of TLRs,

polarization of TH2 cells, or both

10% to 20% IgE binding

frequency

14 Der p 14, Der f 14, Eur m 14,

Sar s 14, Blo t 14, Pso o 14

Vitellogenin/

apolipophorin-like

Might be involved in the activation of TLRs,

polarization of TH2 cells or both

Might be involved in production of IL-4 and IL-13

90% IgE binding frequency

15 Der p 15, Der f 15 Chitinase Unknown but might be involved in the

polarization of TH2 cells

70% IgE binding frequency

16 Der f 16 Gelsolin Unknown 50% IgE binding frequency

17 Der f 17 EF-hand Ca21-binding

protein

Unknown 35% IgE binding frequency

18 Der p 18, Der f 18, Blo t 19 Chitinase Unknown but might be involved in the

polarization of TH2 cells

55% IgE binding frequency

19 Blo t 19 Antimicrobial peptide Unknown 10% IgE binding frequency

20 Der p 20 Arginine kinase Unknown —

21 Der p 21, Blo t 21 Lipid-binding protein Unknown but might be involved in the activation

of TLRs

Midpotency (Dermatophagoides

species)

Dominant (Blomia species)

22 Der f 22 Lipid-binding protein Unknown —

(Continued)
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TABLE II. (Continued)

Mite

allergen

group

Identified

allergens Molecular category Effect on the immune system* Quantitative allergenicityy

23 Der p 23 Chitin-binding protein Unknown but homology observed with

peritrophin-A domain

—

24 Der f 24 Ubiquinol-cytochrome

C reductase–binding

protein homolog

Unknown —

The data have been compiled from several references8,61,62,65-68 and www.allergen.org (accessed December 12, 2013). Allergen nomenclature is presented based on International

Union of Immunological Societies allergen standard consensus by which the species genus is abbreviated to 3 letters followed by the first letter of the species name and the number

corresponding to a group of allergens sharing similar molecular features. The Identified allergens column was created by using a composite of all the published references and

www.allergome.org; allergens from the published references were not all found in allergome.org, which predominantly reports Dermatophagoides species allergens.

CLR, C type lectin receptors; DC, dendritic cell; DC-SIGN, dendritic cell–specific intercellular adhesion molecule 1–grabbing nonintegrin; IDO, indoleamine-2,3,-dioxygenase;

LAP, latency-associated peptide; MR, mannose receptor; PAR-2, protease-activated receptor 2; TLR, Toll-like receptor; ZO-1, zonula occludens 1.

*Dermatophagoides species allergens are described on the basis of the current literature. However, the extent of molecular and functional parity of a specific allergen molecule in

different species is not known.

�IgE binding frequency is expressed as the percentage of patients in different studies.
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less suitable for the mite, whereas insulating fabrics or woven
textiles provide a matrix for skin scales that can minimize the
effect of changes in temperature and humidity on mites.8

A relative humidity of less than 50% critically reduces HDM
prevalence. Adaptations, such as the ability to capitalize on brief
periods of humidity to compensate for arid periods, might explain
their success across habitats, making humidity alone a poor
predictor of mite survival.60 It might be that the ability to respond
rapidly to changes plays a role, with some research suggesting
that strong fluctuations in humidity constrain population
growth.61
HDM ALLERGENS AND THEIR ROLE IN THE

HUMAN IMMUNE RESPONSE
Allergenic effects in HDM allergy are thought to be

orchestrated through 2 main routes: through the CD41 TH2 cells
that induce and drive the IgE-dependent allergic response and
through the innate immune system.6,62 It is the combined effect
of the adaptive and innate immune reactions that makes HDM
allergens so powerful.63 Components that can activate the
immune system include not only proteases and immunogenic
epitopes but also the structural polysaccharide chitin from
the exoskeleton, microbial adjuvant compounds, and ligands
originating from mite-associated compounds.62,63

Molecules from different mite-related products vary in size,
affecting the likelihood of inhalation and how the allergen
penetrates into the lung. Smaller particles (1.1-4.7 mm) might
be inhaled less frequently than larger particles (>4.7 mm) but can
penetrate deeper into the lung.64 Large molecules might induce a
more substantial early-phase response than smaller ones,
provoking symptoms at lower quantities.23 Group 1 molecules
(Table II)8,61,62,65-68 in particular have the capacity to activate
multiple routes to distort the immune response, characterizing
the virulent effect of HDM allergens on the immune system. In
addition to their powerful direct effects, group 1 molecules can
also activate the innate immune response and are thought to be
recognized by protease-activated receptors and Toll-like
receptors and to mimic pathogen-associated molecular pattern
activation.6 They can also cause direct damage to the respiratory
epithelial cells, activating mast cells independently of IgE.69

Indirect effects are also relevant: synchronous exposure to
enzymatic allergens, such as Der p 1, might facilitate an allergic
response to nonenzymatic allergens.70 The combined effect of
these processes might explain why therapeutic targeting of
individual elements of the immune system has not yet translated
into clinical efficacy.63

Fig 165 shows the immune response to HDM allergens and the
potential enhancement by HDM proteases both in the IgE-
mediated immediate response and the inflammatory late-phase
response. Although the clinical relevance of these proteolytic
effects is still largely unknown, they might play important roles
in contributing to the high allergenicity of HDMs. The inhaled
aeroallergens penetrate the airway epithelium, which, in
subjects predisposed to allergy, stimulates the migration of
dendritic cells to the lymph nodes.71 Inflammation in the
airways is then orchestrated by dendritic cells and stimulation
of TH2 cell–mediated immunity. The perpetuation of this immune
response is critical and known to be increased in patients with
HDM allergy.72

Although Fig 1 shows the core model for HDM allergy, HDM
allergens manifest different pathways depending on their
molecular structure. Table II summarizes the currently identified
HDM allergens grouped by molecular profile and likely activity.
The 2 most significant groups (groups 1 and 2) have very
different effects; the protease activities of group 1 allergens
potentially destroy the epithelial tight junctions, whereas group
2 allergens might induce mimicry of the Toll-like receptor 4
coreceptor MD-2.62 Der p 1 and Der p 2 are the most
frequently recognized clinically relevant HDM allergens. It is
increasingly recognized that the dominant causative allergen in
a population might differ regionally59 and could also vary
between patients.

The primary HDM allergens (ie, group 1 and 2 allergens) are
not species specific because of considerable sequence and
structural homology. However, individual HDM-specific IgE
repertoires can only occasionally distinguish between Der p 1
and Der f 1 or even less frequently between Der p 2 or Der f 2.73

Although Der p 1 and Der p 2 are commercially available for
testing, new allergens are being discovered: Der p 23 has recently
been described and has been found to react with IgE antibodies in
74% of patients with HDM allergy studied.74
UPPER AND LOWER AIRWAYS: THE RELATIONSHIP

IN HDM ALLERGY
The strong correlation between allergic asthma and allergic

rhinitis as comorbidities is often interpreted as evidence of an

http://www.allergen.org
http://www.allergome.org
http://allergome.org


FIG 1. Potential enhancement of the allergic response by HDM allergens. Uptake of HDM allergen particles,

immediate allergic reaction, and sustained inflammatory response are shown.65
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underlying sensitization.75,76 The term ‘‘respiratory allergic
disease’’ recognizes a unifying allergic mechanism for the
pathogenesis of allergic subtypes within asthma and rhinitis. In
practice, patients present to physicians with specific symptoms
from one or both conditions, with the causal allergen less of a
focus. Identification and treatment of HDM allergy is a
worthwhile investment in future patient outcomes, regardless of
whether the condition exists independently or concurrently with
other allergies.

HDM allergens might be highly prevalent, but only a minority
of persons exposed to them have clinical symptoms. Observed
familial trends suggest that genetic predisposition renders some
patients more vulnerable to sensitization than others.15 By using
nasal brushings from children with HDM allergy and allergic
rhinitis, in vitro exposure to IL-4, IL-13, IFN-a, IFN-b, and
IFN-g was used to generate a subgroup cluster analysis of gene
expression. Genetic signatures relevant to the TH2-driven
immune response had a 91% success rate in predicting allergic
rhinitis, suggesting an underlying genetic effect.77 Similar
in vitro cluster analyses for asthma associated with HDM allergy
identified genetic effects of 2 functional single nucleotide
polymorphisms mediating thymic stromal lymphopoietin,
indicating that aberrant innate immunity might be linked to
certain polymorphisms.78
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Epigenetic effects involved in lung and airway remodeling in
response to challenge from HDM allergens are of particular
interest: animal models suggest that aberrant methylated genes
might be involved in airway hyperresponsiveness.79 It is likely
that many such effects exist, and at the time of writing, a
systematic search of the Online Mendelian Inheritance in Man
(2014) database found 231 records associated with HDM allergy.

Current thinking suggests a multifactorial model for allergy, in
which an initial trigger (viral or environmental) stimulates the
innate immune response to effect prolonged chronic inflammation,
which might, in those with a genetic susceptibility, interact with
exposure to 1 or more allergens facilitating allergy.80 The German
Multicentre Allergy Study comparing atopic and nonatopic
children with wheeze and impaired lung function found that
children in the nonatopic group had no symptoms at school age
(90%) and had normal lung function in puberty.3 Those sensitized
to perennial allergens in the first 3 years of life experienced poor
lung function, particularly when combined with high exposure to
the sensitizing allergen. These children had a forced expiratory
volume/forced vital capacity of 87.4 (SD, 7.4) compared with
nonsensitized children 92.6 (SD, 6.0). The authors suggest that
the first 3 years of life are critical in the formation of future allergy3

because children might be particularly vulnerable to allergen
exposure during organogenesis. The concept of a ‘‘2-hit’’ model
in which combined factors elicit long-term damage is increasingly
accepted as an explanation for the development of allergy.80

The idea of a critical window is supported by results from
several pediatric cohort studies, which suggest that sensitization
to HDM in children less than 5 years of age is a significant risk
factor for asthma later in childhood.81,82 The Manchester Asthma
and Allergy Study followed children from birth by using
unsupervised cluster analyses to identify multiple atopic
phenotypes. At age 8 years, sensitization to HDM, both
independently and as part of multiple sensitizations, increased
the risk of respiratory disease in 87% of the original cohort.83

The translation from silent sensitization to symptomatic
allergic disease after exposure to HDM is incompletely
characterized and understood and is complicated by interacting
strata of the immune response. The clinical reaction to an allergen
challenge might be immediate or delayed, broadly corresponding
to a reactive sensitization and chronic inflammation; both states
can occur sequentially, independently, or synchronously. A study
collating data from asthmatic patients found that after allergen
exposure, the late response was more frequent after exposure to
HDM than to cat or grass pollen.84

Although nonrespiratory allergic symptoms are beyond the
scope of this review, it is worth noting that sensitization can be
both systemic and localized. Inhalation of HDM aeroallergens
can elicit eczematous lesions,85,86 and patients with nonsteroidal
anti-inflammatory drug–induced urticaria/angioedema show a
high prevalence of HDM sensitization.87 This suggests that
deposition of an allergen in one organ (the respiratory tract)
causes symptom flare-ups in another organ. Local allergen-
dependent mechanisms can theoretically cause concomitant
reactions elsewhere in the body, with the most severe form being
a systemic anaphylactic reaction.
CONCLUSIONS
HDM allergy is highly prevalent and can manifest in the

respiratory system as allergic rhinitis, allergic asthma, or both but
should be thought of as one common condition affecting the
whole respiratory tract. Although mite populations are
constrained by humidity, the adaptive spread of the HDM,
overlapping as it does with human habitation, suggests that it
thrives in preferred human living conditions. Therefore
controlling exposure is challenging. Studies indicate that HDM
allergen levels should be maintained at less than 2 mg/g to
decrease the likelihood of sensitization; however, measures to
decrease HDM exposure have shown little or no benefit on
symptoms in sensitized subjects.

HDM allergens are unusually potent and able to activate both
the adaptive and innate immune systems. The exact pathways
vary according to allergen group, and elucidating these offers
could be an exciting new avenue of future research for
understanding HDM allergy in human subjects. However, the
interactions between allergen, immune response, sensitization,
and airways disease are highly complex and still incompletely
understood. The best outcomes for patients might be achieved by
focusing directly on the HDM and its allergens, and identifying
HDM allergy as the underlying cause of respiratory allergic
disease is an important step in managing clinical control of
symptoms, as well as potentially preventing disease progression.
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