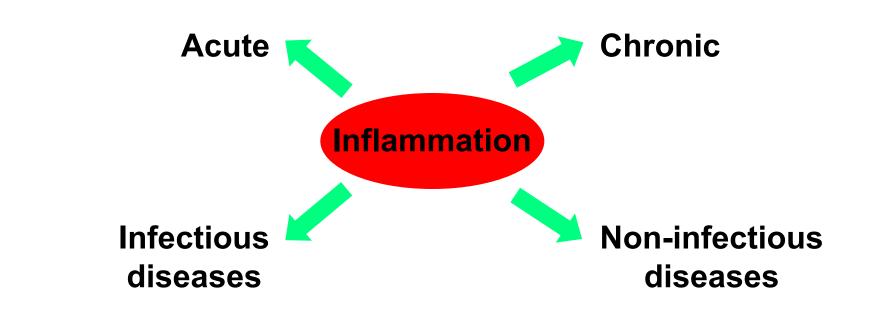
Cours module 4 DESC d'Allergologie et Immunologie Clinique

<u>Jeudi 25/03/21</u> 09 h 00 – 12 h 30 <u>F.Godesky</u> Allergie alimentaire adulte

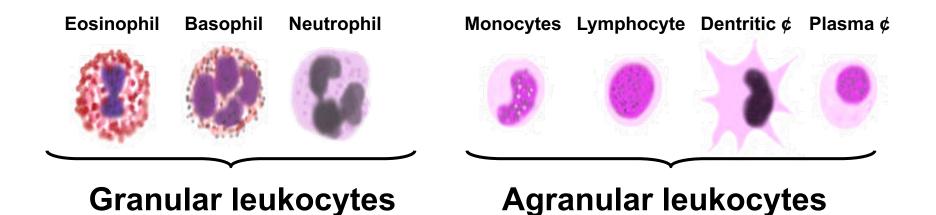
13 h 30 – 17 h 00 <u>P.Bierme -Anne-Karine Corréard ou A.Dupré la Tour</u> Allergie alimentaire pédiatrique

<u>Vendredi 26/03/21</u> 09 h 00 – 10 h 30 <u>N. Freymond</u> Allergie et Asthme 10 h 30 – 12 h 30 <u>G. Devouassoux</u> Asthme sévère

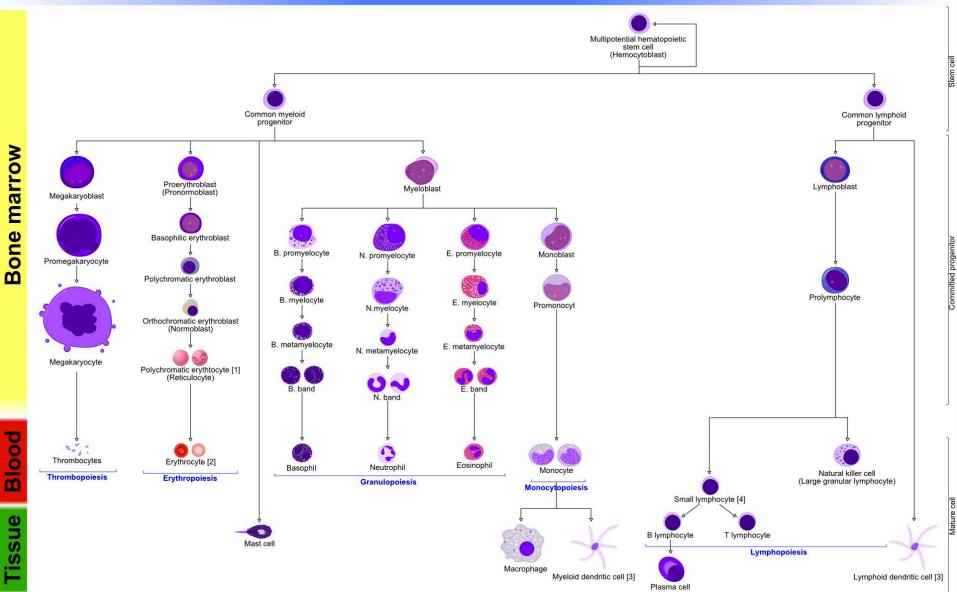

13 h 30 – 15 h 30 <u>C. Dzviga</u> Pollution intérieure et impact sur les maladies allergiques 15 h 30 – 17 h 00 <u>A. Bentaher</u> Protéases du système immunitaire : rôle pro-inflammatoire ou anti-inflammatoire ?

PROTÉASES DU SYSTÈME IMMUNITAIRE: RÔLE PRO- ou ANTI-INFLAMMATOIRE ?

A. Bentaher, Research Director, Inserm Inflammation et Immunité de l'Epithélium Respiratoire EA7426


azzak.bentaher@inserm.fr

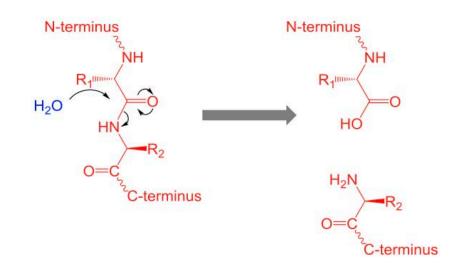
Leukocytes Recruitment : a Characteristic of Inflammation


Wherever inflammation occurs there are certain local mechanisms in common, despite differences in the precipitating factors,...: the recruitment of leukocytes from the circulation to the site of tissue damage.

INFLAMMATION: ACUTE OR CHRONIC

Diseases: Pulmonary, Cardiovascular, Gastrointestinal, Nephrological,
Arthritis
Cancer
etc

Hematopoiesis in humans



- Enzyme that catalyzes (increases the rate of) proteolysis

- Cleavage of peptide bonds within proteins

- Enzymes act on substrates to converts them into products

Proteases :

- Classification into famillies based on catalytic residue, e.g.:

Aspartic proteases* Glutamic proteases* Metalloproteases* metal zinc instead of residue

Serine proteases Cysteine proteases Threonine proteases

- Classification fonctionnelle (en fonction du lieu de coupure) :

Exopeptidases (ou exoprotéases) : aminopeptidases - carboxypeptidases Endopeptidases (ou endoprotéases) (à l'intérieur)

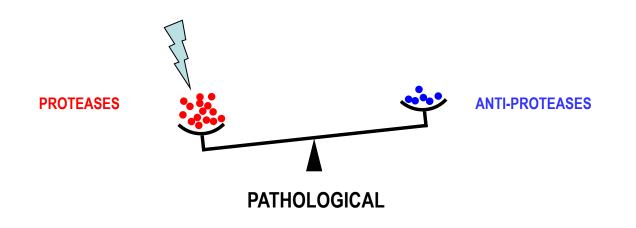
- Physiologic and Pathophysiologic consequences, e.g.:
 - Gastrointestinal tract / Proteins in food.
- Physiologic - Implantation and Embryonic Development
 - Blood serum / Blood- clotting & clot lysis
 - Immune system.
 - Lifetime of hormones, antibodies, or other enzymes.

Fastest "switching on" and "off" regulatory mechanisms **Cascade reactions**

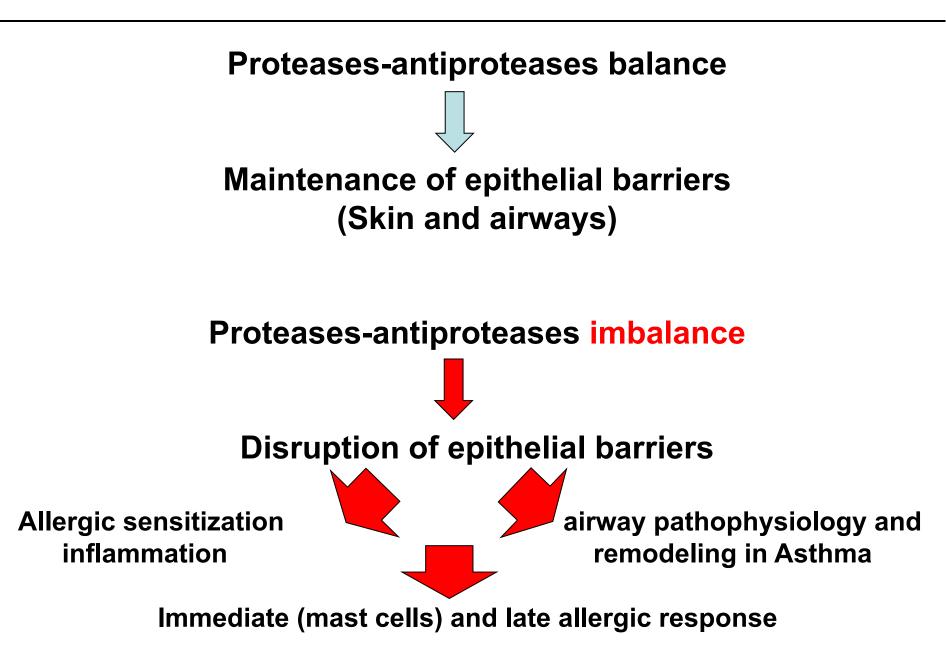
- Pathophysiologic
 - Matrix protein degradation
 - Receptor cleavage
 - Cytokine inactivation
 - Cell lysis
 - Tissue destruction
 - Etc.....

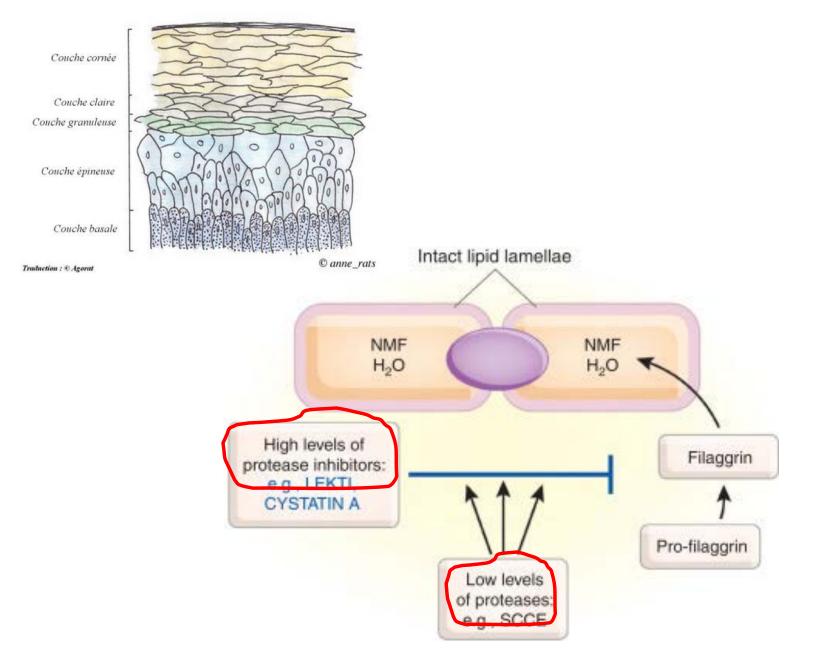
- Proteases: Specific hydrolysis of peptide bonds in proteins

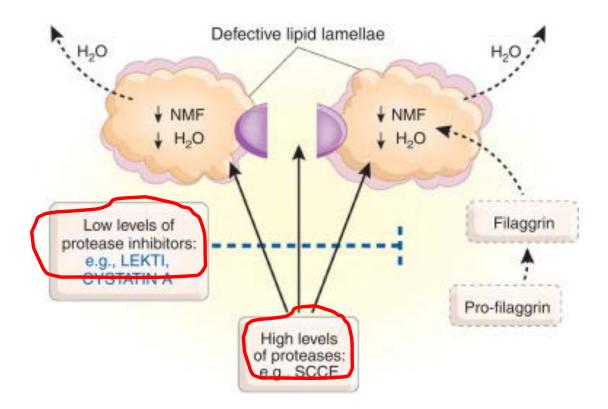
- Irreversible: activation, inactivation or degradation of targeted protein

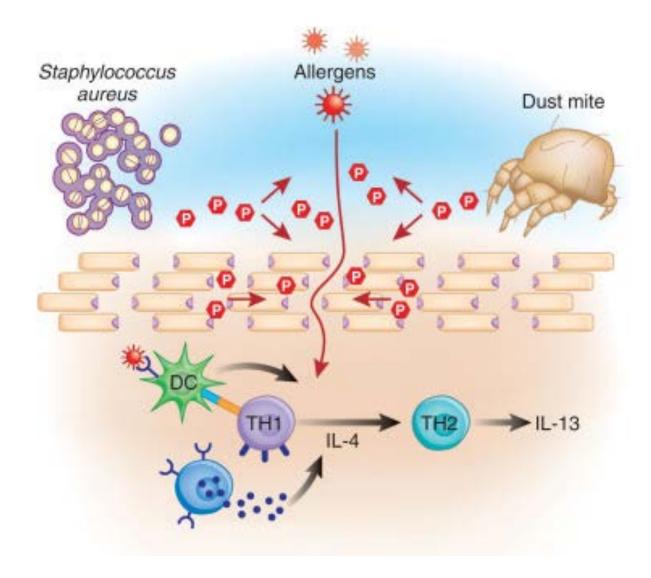

- Physiologic roles:

Immunity, blood coagulation, apoptosis, inflammation, angiogenesis, tissue remodeling....

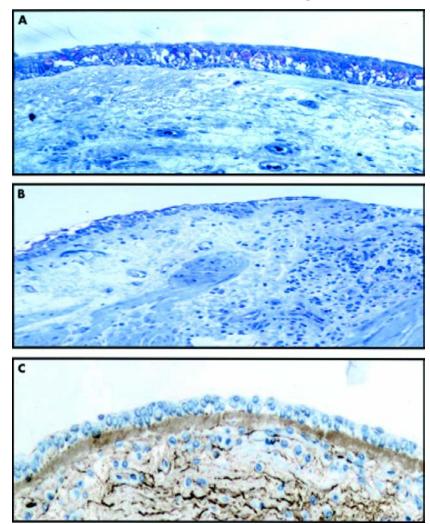

- Pathophysioloc roles:


Pulmonary diseases, arthritis, cancer.....


Proteases-antiproteases imbalance hypothesis



PROTEASES and ALLERGIC DISORDERS

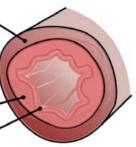


Comparison of (A) normal and (B, C) asthmatic airway wall showing epithelial damage, increased smooth muscle, inflammatory cell infiltration, and sub-basement membrane thickening.

P A Beckett, and P H Howarth Thorax 2003;58:163-174

Copyright © BMJ Publishing Group Ltd & British Thoracic Society. All rights reserved.

healthy airway


diseased airway

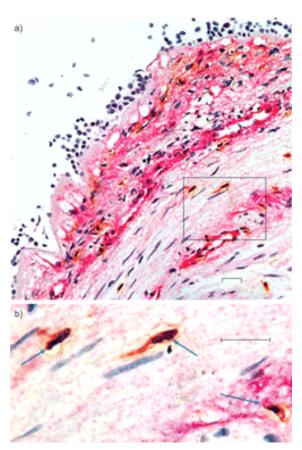
smooth muscle

muscle cells wrapped spirally around the wall

submucosa fibroblasts embedded in connective tissue

epithelium basement membrane subepithelial collagen layer

Single Nucleotide Polymorphism (SNP)


 α 1-antichymotrypsin \longrightarrow Asthma,

- IgE-mediated type I hypersensitivity (e.g., asthma, rhinitis, and dermatitis)

- Within intraepithelial and smooth muscle cells

- Density correlates with bronchial hyperresponsiveness

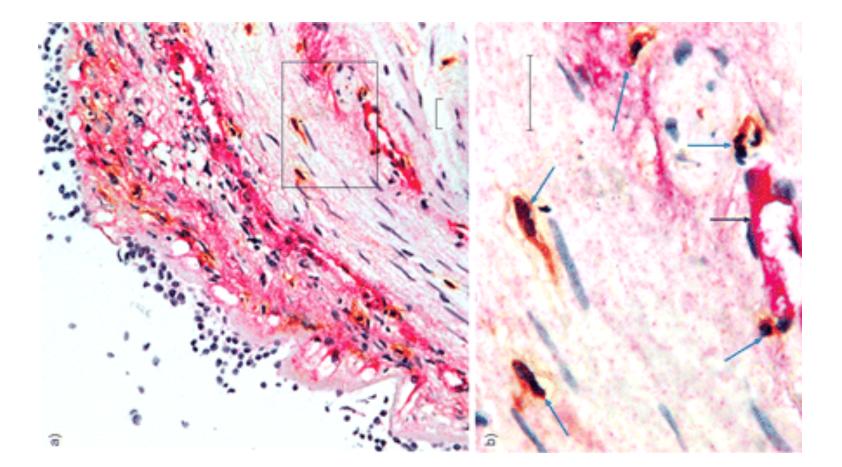
- Central role in promoting airway remodeling and inflammation

MAST CELL-DERIVED PROTEASES: KEY PLAYER

- Proteases account for around 25% of total MC protein

- MC-specific proteases: tryptase and chymase

- 10 to 35 pg of tryptase and chymase per one cell


Central role in promoting airway remodeling and inflammation

- Secretion of large quantities following allergen challenge.

- High levels of transcript and immunoreactive protein are found in asthmatic bronchial epithelial biopsies.

- Basal level of tryptase concentration is higher in BALF of atopic asthmatics, further increased in response to allergen challenge

Mast cell-derived tryptase in airway smooth muscle layer

- Sérine-protéase tétramérique de masse moléculaire 134 kDa
- Essentiellement sécrétée par les mastocytes
- > Médiateur de la réaction d'hypersensibilité immédiate
- Demi-vie plus longue que l'histamine (1,5 à 2,5 heures)
- > 20 à 50 % des protéines mastocytaires

- Interacts with protease activated receptors (PAR-2) on ASM leading to constriction

- Potentiates the action of known constrictors like histamine

- Degrade vasoactive peptide (bronchodialating peptide)

- Cleaves extracellular matrix

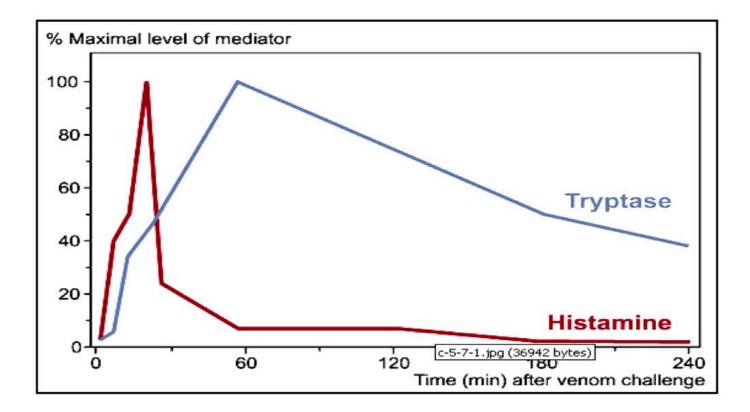
- Activates matrix cleaving proteases

- Can also act as mitogens (SM hyperplasia, fibrosis, ...)

- Causes degranulation of nearby MCs

- Cleaves to / interleukin IL-33 (/ inflammation potency)

- Tryptase inhibition suppresses IL-33-dependent allergic airway inflammation


Deux formes moléculaires dans le plasma :

- > Tryptase α :
 - Forme physiologiquement sécrétée par les mastocytes
 - Considérablement augmentée dans les mastocytoses systémiques
 - Responsable du taux basal sérique
- > Tryptase β :
 - Forme stockée dans les granules mastocytaires
 - Biologiquement active
 - Libérée avec l'histamine au cours des réactions anaphylactiques

Libération de tryptase

activation mastocytaire

Table 1. Biological processes in which tryptase has been implicated. MS, Multiple sclerosis; EAE, experimental autoimmune encephalomyelitis; SIDS, sudden infant death syndrome.

	Type of implication				
	Elevated tryptase levels	Tryptase induces process	Tryptase inhibitor reduces response	Reference	
Airway hyper-responsiveness/					
inflammation	+	+	+	[87,89-92,159-16]	
Neutrophil recruitment		+		[26,68,97]	
Eosinophil recruitment		+		[97]	
Vascular permeability increase		+		[96]	
Fibrosis	+			[109]	
Sepsis				[121]	
Ulcerative colitis			÷	[167]	
Angiogenesis		+		[122,124]	
Arthritis	+			[104,178]	
MS/EAE	+			[106,179]	
SIDS	+			[103]	
Duchenne muscular dystrophy	+			[124]	
Psoriasis	+			[107,180]	
Joint inflammation		+	+	[150]	
Intestinal inflammation			+	[151]	
Atopic dermatitis	+			[109]	
Tumor cell proliferation		+		[144]	
Itching		+		[152]	

Table 2. Tryptase substrates. VIP, Vasoactive intestinal peptide; PHM, peptide histidine-methionine; CGRP, calcitonin gene-related peptide; HDL, high density lipoprotein; pro-uPA, pro-urokinase plasminogen activator; proMMP, pro-matrix metalloprotease; PAR, protease activated receptor.

	Cleavage identified in/when:			
	Mixture of purified components	Tryptase added to cell culture or tissue		Reference
Kininogen		+		[126]
Prekallikrein		+		[126]
Fibrinogen	+	+		[30,125]
Gelatin	+			[135,136]
VIP	+			[128]
PHM	+			[129]
CGRP	+			[129]
Pro-uPA	+			[137]
Fibronectin	+	+		[54,83-85]
HDL	+	+		[127]
proMMP-3	+	+		[132,133]
PAR-2		+	+	[120,140,141,151]
Type VI collagen	+	+		[181]
Pre-elafin	+			[182]

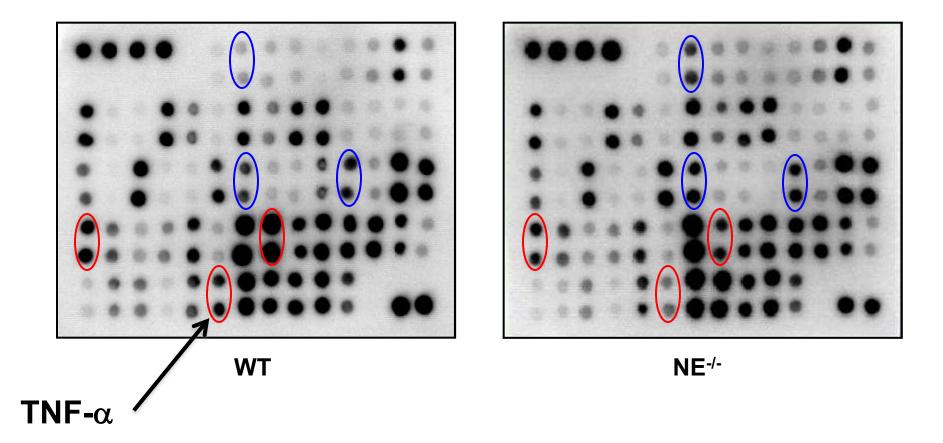
- More skin than lungs
- Degrades matrix proteins
- Activates matrix metalloproteases
- Cleaves tight junction proteins. Thus, increasing epithelial permeability, sensitization by increasing access to foreign antigens
- Cleaves and activates:

proIL-1 β, proIL-18, CCL-6, CCL-9, and CCL-15

Cathepsin G

- Expressed in PNNs, DCs, and monocytes.
- Cleave both tryptic and chymotryptic substrates.
- Functions as chymase
- Activates matrix metalloproteases

Cathepsin C


- Has endoproteolytic activity
- Activates of chymases, cathepsin G, and tryptases

Matrix metalloprotease 9

- activated by chymases,
- degradation of extracellular matrix

Altered cytokine levels in infected cell-free BALs in the absence of NE

Cytokine antibody microarray

- No unique structure or function responsible for allergenicity

- Enzymatic activity (particularly protease activity) of some proteins contributes to allergenicity.

- Various clinically relevant sources: house dust mite (HDM), cockroach, pollen, and fungi

ALLERGEN-DERIVED PROTEASES

Mite allergens			
Blot 1	B. tropicalis (mite)	Cysteine protease	
Blot 3	B. tropicalis (mite)	Trypsin	
Blot 6	B. tropicalis (mite)	Chymotrypsin	
Der m 1	D. microceras	Cysteine protease	
Der P 1	D. pteronyssinus	Cysteine protease	
Der P 9	D. pteronyssinus	Collagenolytic serine	
		protease	
Eur m 1	E. maynei	Cysteine protease	
Cockroach allergens			
Blag 2	B. germanica	Aspartic protease	
Per a 2	P. americana	Aspartic protease-like	
Per a 10	P. americana	Serine protease	
Food allergens			
Act d 1	A. deliciosa (kiwi fruit)	Cysteine protease	
Cuc m 1	C. melo (muskmelon)	Alkaline serine protease	

A. mellifera - Apis mellifera, B. pensylvanicus - Bombus pensylvanicus, A. aegypti - Aedes aegypti, A. artemisiifolia - Ambrosia artemisiifolia, A. alternate - Alternate alternate, A. flavus Aspergillus flavus, A. funigatus - Aspergillus funigatus, A. niger - Aspergillus niger, A. oryzae - Aspergillus oryzae, A. versicolor - Aspergillus versicolor, C. cladosporioides - Cladosporium cladosporioides, C. herbarum - Cladosporium herbarum, C. lunata - Curvularia lunata, E. purpurascens - Epicoccum purpurascens, F. proliferatum - Fusarium proliferatum, P. brevicompactum - Penicillium brevicompactum, P. chrysogenum - Penicillium chrysogenum, P. citrinum - Penicillium citrinum, P. oxalicum - Penicillium oxalicum, T. rubrum - Trichophyton rubrum, T. tonsurans - Trichophyton tonsurans, R. mucilaginosa - Rhodotorula mucilaginosa, B. tropicalis - Blomia tropicalis, D. microceras - Dermatophagoides microceras, D. pteronyssinus - Dermatophagoides pteronyssinus, E. maynei - Euroglyphus maynei, B. germanica - Blattella germanica, P. americana - Periplaneta Americana, A. deliciosa - Actinidia deliciosa, C. melo - Cucumis melo, P. dominula - Polistes dominula, CUB - Complement C1r/C1s, Ueqf Bmp1 domain, IUIS - International union of immunological societies

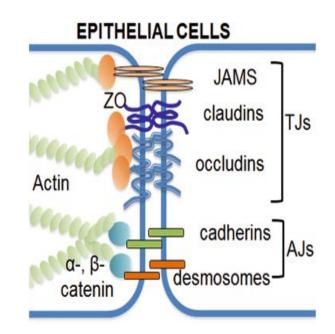
- Correlation between severity of nasal allergen challenge and the amount of endogenous protease inhibitor

- α 1-antitrypsin, secretory leukoprotease inhibitor (SLPI), and elafin

- Secreted in the lung lining fluids and protect the respiratory tract from proteolysis by proteases.

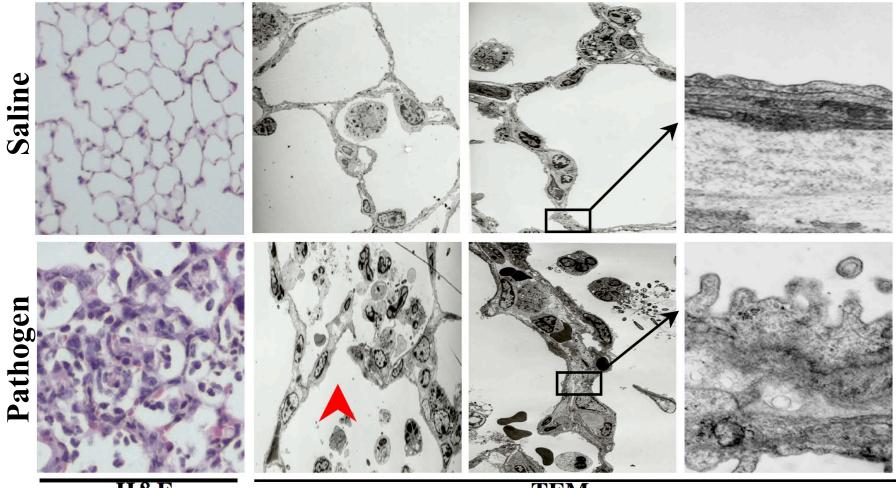
- SLPI blocks and inactivates mast cells and leukocyte serine proteases that are implicated in allergic diseases

- An imbalance between proteases and antiproteases: reported in the nasal mucosa of allergic rhinitis patients


- Der p 1 is known to cleave and inactivate α 1-antitrypsin.

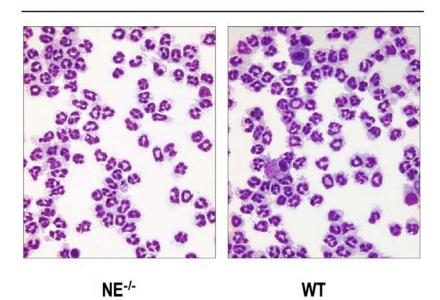
Inflammatory responses at the epithelial surfaces?

- The airway epithelium: first line of defense against inhaled insults (pollutants, irritants, pathogens, and aeroallergens)


- Intercellular epithelial junctions comprise of tight junctions, adherens junctions, and desmosomes
- Maintain the epithelial barrier and protect the underlying tissue from the inhaled substances.

- Defective and disrupted epithelial barrier in allergic diseases such as asthma and dermatitis

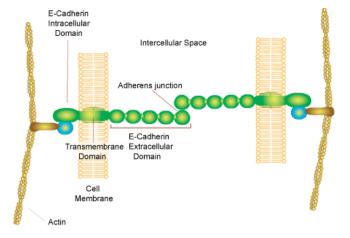
Pathogen-induced acute lung injury


WT Lung

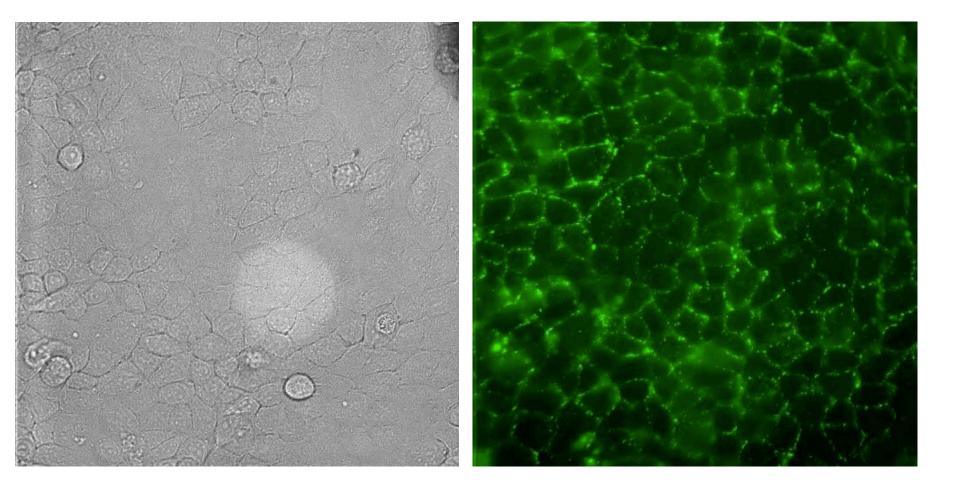
H&E

TEM

LPS-induced acute lung inflammation and injury



LPS - 24 h


 $\begin{array}{c|c} BAL & cell-free mBALF\\ \hline Pellet & 0 h & 4 h & 24h & kD\\ \hline & & & & -51\\ & & & -51\\ & & -43\\ & & -34\\ \hline & & & -34\\ \hline & & & -28\\ & & -28\\ \hline & & & -17\\ \end{array}$

E-cadherin (E-cad)

- Member of the cadherin superfamily
- Expressed in various epithelia (e.g., Lung)
- Physiologic functions include:
 - ✓ Cell-cell adhesion
 - Cytoskeletal and tissue organisation
 - Morphogenesis (cell recognition and sorting)
 - Maintenance of cell structure
 - ✓ Tissue polarity
 - Cell migration, proliferation and survival

Loss of membrane integrity in the presence of NE

- Allergens with protease activity shown to disrupt airway epithelial barrier by cleaving tight junction proteins.

- Der p 1 :

cellular detachment of epithelial cells epithelial injury increasing permeability to serum albumin.

- HDM fecal pellets (HDMFPs): increased epithelial permeability and disrupted tight junctions - Der p 1 in HDMFP: disruption of epithelial barrier cleavage sites are present on occludin and claudin 1.

- Similar studies with pollen proteases with similar findings: Cleavage of tight junction proteins Disruption of epithelial barrier integrity

> Allergic sensitization (delivery of aeroallergens across disrupted epithelium and allergic inflammatory reactions)

- Activation of Airway and Bronchial Epithelial Cells secretion proinflammatory cytokines

- Modulation of Functions of Immune Cells Mediator expression and cell polarisation

- Cleavage of Cell Surface Receptors e.g. cleavage of CD23 increasing IgE synthesis

POTENTIAL THERAPEUTIC STRATEGIES

- ✓ Control of excessive immune cell recruitment
- ✓ Modulation of cell activation/degranulation (e.g., Protease release)
- ✓ Protease inhibition, but with caution

- A balance between endogenous proteases and their inhibitors is necessary for normal homeostasis, e.g. maintenance of epithelial barrier.

- A disruption in this balance leads to the disruption of epithelial barrier resulting in allergic sensitization and inflammation.

- Proteases: targets for developing therapeutics against allergic diseases.

- bis-amidines, when used with peptidic inhibitors: airway inflammation
- MOL6131, a nonpeptide inhibitor of lung MC tryptase: allergic features
- Tryptase inhibitor:

bronchoconstriction in mild atopic asthmatics.

- APC366, a tryptase inhibitor:

antigen-induced late asthmatic response

- Gabexate mesylate (FOY) and nafamostat mesilate (FUT), synthetic serine protease inhibitors attenuated

airway eosinophilia

IgE production, IL-4, and tumor necrosis factor-α levels

IL-12 and IL-10 levels

Der p 1-induced airway hyperresponsiveness airway remodeling Th2 cytokines
 Th17 cell function nuclear factor-kB activation

- AEBSF, a serine protease inhibitor

allergic airway inflammatory parameters

SUN C-8257, Y-40613, and SUN C-8077, chymase inhibitors, therapeutic potential in AD in animal models

Human chymase and cathepsin G inhibitors

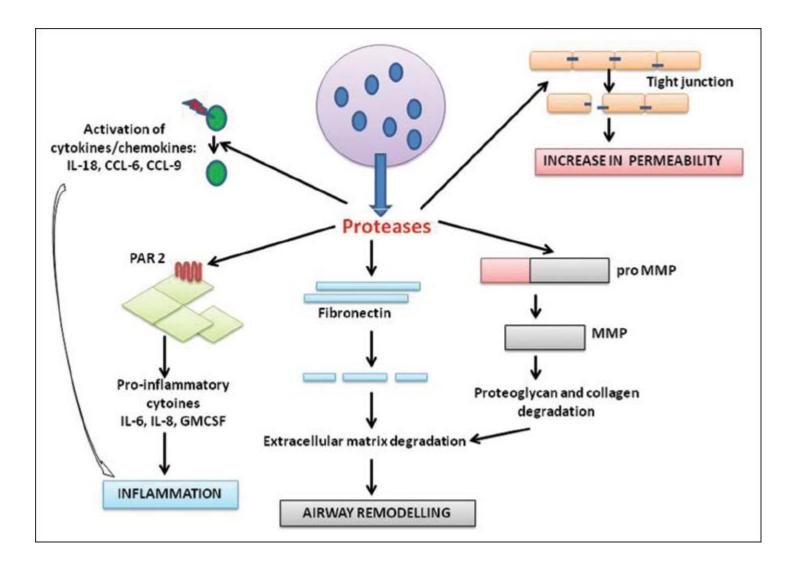
airway hyperresponsiveness airway neutrophilia in a mice model exposed to tobacco smoke

SLPI and urinary trypsin inhibitor (UTI) have been evaluated potential therapeutic agents.

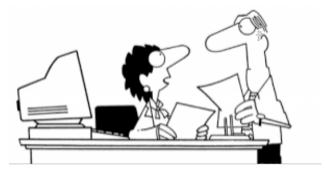
SLPI,

allergen-induced pathophysiologic airway responses bronchoconstriction,
 AHR

airway inflammation


UTI, purified from a human source

allergic inflammatory symptoms in house dust mite challenged


Human serum albumin nanoparticles as a nanovector carrier of therapeutic molecules: Application to neutrophil elastase and secretory leukocyte protease

TAKE HOME MESSAGE

- Protease-mediated mechanism in allergic responses, still poorly understood???
- Corticosteroids / allergic symptoms ?! side effects???

POTENTIAL THERAPEUTIC STRATEGIES

"Don't tell them we failed. Tell them we decided to temporarily postpone our success"

THANK YOU