PROTÉASES DU SYSTÈME IMMUNITAIRE: RÔLE PRO- ou ANTI-INFLAMMATOIRE ?

A. Bentaher, Research Director, Inserm Inflammation et Immunité de l'Epithélium Respiratoire

EA7426

azzak.bentaher@inserm.fr

Protéases du Système Immunitaire: rôle pro-inflammatoire ou anti-inflammatoire

A. Bentaher, Research Director, Inserm Inflammation et Immunité de l'Epithélium Respiratoire

EA7426

azzak.bentaher@inserm.fr

Bentaher Azzak		
	DR INSERM/PhD - Responsable	+
Devouassoux Gilles	PU-PH/PhD	+
Menotti Jean	MCU-PharmD/PhD	+
Calender Alain	PU-PH/PhD	+
Pacheco Yves	PU-PH/PhD	+
Pizzoccaro Anne	IE (CDD)	
Rebaud Chloé	AI (CDD)	
Bougherira Nedra	Master 2	
Josse Emilie	Master 1	
Perrichet Julien	Master 1	

TRANSLATIONAL RESEARCH STRATEGY				
APPROACHES EXPERIMENTAL CLINICAL				

- Large quantities following allergen challenge.

- High levels of transcript and immunoreactive protein are found in asthmatic bronchial epithelial biopsies.

- Basal level of tryptase concentration is higher in BALF of atopic asthmatics, further increased in response to allergen challenge

TRYPTASE
- Interacts with protease activated receptors (PAR-2) on ASM leading to constriction
- Potentiates the action of known constrictors like histamine
- Cleaves extracellular matrix
- Activates matrix cleaving proteases

TRYPTASE
- Can also act as mitogens
- Causes degranulation of nearby MCs
- Cleaves interleukin IL-33 to generate its potency
- Tryptase inhibition suppresses IL-33-dependent allergic airway inflammation

	•	TRYPTAS	E		
Table 1. Biological processes in wi	hich tryptase has been in	nplicated. MS, Multiple scl	erosis; EAE, experimental au	toimmune encephalomye	
illus, SIDS, sudden iniant death syn	arome.				
			-		
	Elevated tryptase levels	Induces process	reduces response	Reference	
Airway hyper-responsiveness/					
inflammation	+	+	+	[87.89-92.159-161]	
Neutrophil recruitment		+		126 68 971	
Eosinophil recruitment		+		[97]	
Vascular permeability increase		+		1961	
Fibrosis	+			[109]	
Sepsis				[121]	
Ulcerative colitis			+	[167]	
Angiogenesis		+		[122,124]	
Arthritis	+			[104,178]	
MS/EAE	+			[106,179]	
SIDS	+			[103]	
Duchenne muscular dystrophy	+			[124]	
Psoriasis	+			[107,180]	
Joint inflammation		+	+	[150]	
Intestinal inflammation			+	[151]	
Atopic dermatitis	(+)			[109]	
Tumor cell proliferation		+		[144]	
Itching		+		[152]	
				ND PADA OC. /	

	•	TRYF	PTA	ASE
Table 2. Tryptas PHM, peptide h peptide; HDL, plasminogen act protease activate	se substrates istidine-methi high density ivator; proMited receptor.	 VIP, Vase ionine; CGR lipoprotein MP, pro-mat 	pactive IP, calc ; pro-u trix met	intestinal peptide; itonin gene-related IPA, pro-urokinase talloprotease; PAR,
	Cleavage ide	ntified in/w	hen:	0
	Mixture of purified components	Tryptase added to cell culture or tissue	In vivo	Reference
Kininogen		+		[126]
Prekallikrein		+		[126]
Fibrinogen	+	+		[30,125]
Gelatin	+			[135,136]
VIP	+			[128]
PHM	+			[129]
CGRP	+			[129]
Pro-uPA	+			[137]
Fibronectin	+	+		[54,83-85]
HDL	+	+		[127]
proMMP-3	+	+		[132,133]
PAR-2		+	+	[120,140,141,151]
Type VI collagen	+	+		[181]
Pro-olafin	+			[182]

CHYMASE
- Degrades matrix proteins
- Activates matrix metalloproteases
- Cleaves tight junction proteins. Thus, increasing epithelial permeability, sensitization by increasing access to foreign antigens
- Cleaves and activates: proIL-1 β, proIL-18, CCL-6, CCL-9, and CCL-15

NON MAST CELLS-SPECIFIC PROTEASES
Cathepsin G
- Cleave both tryptic and chymotryptic substrates.
- Functions as chymase
- Activates matrix metalloproteases
Cathepsin C
- Has endoproteolytic activity
- Activates of chymases, cathepsin G, and tryptases
Matrix metalloprotease 9
- activated by chymases,
- degradation of extracellular matrix

DISRUPTION OF EPITHELIAL BARRIER

- Allergens with protease activity shown to disrupt airway epithelial barrier by cleaving tight junction proteins.

- Der p 1 : cellular detachment of epithelial cells epithelial injury increasing permeability to serum albumin.

- HDM fecal pellets (HDMFPs): increased epithelial permeability and disrupted tight junctions

POTENTIAL THERAPEUTIC STRATEGIES

- ✓ Control of excessive immune cell recruitment
- Modulation of cell activation/degranulation (e.g., Protease release)
- ✓ Protease inhibition, but with caution

TRYPTASE

> Grande variabilité inter-individuelle des valeurs usuelles :

- valeur de base propre à chaque individu
- unique et stable au cours du temps.

 \succ Sujets sains: concentrations détectables varient de 1,9 à 13,5 µg

Activation of Airway and Bronchial Epithelial Cells
In vitro studies: protease allergens activate airway epithelial cells secretion proinflammatory cytokines.
Mounting evidence: sensitization occurs at mucosal surfaces proteolytic activity breaking the normal state of tolerance
Repeated exposure of airway mucosa: lung eosinophilia and higher IgE/IgG1 production in a protease activity-dependent manner
Airway epithelial cells exposed to mite, timothy grass pollen, or birch pollen extracts showed secretion of IL-6, IL-8, granulocyte macrophage colony-stimulating factor, and monocyte chemotactic protein-1. [58],[5
Use of purified proteases Der p 1and Der p 9 demonstrated that this release of cytokines from the airway epithelial cells was dependent on the protease activity of the allergens. [60]
Der p 1 and Der p 5 activated human derived airway epithelial cells by both protease-dependent and protease-independent mechanisms. [61] Asokananthan et al. showed that Der p 1-induced proinflammatory cytokine release from the respiratory epithelial cells was in part mediated by PAR-2. [62]
However, other reports have suggested that though Der p 1 is capable of cleaving PAR-2 peptide, it activates airway epithelial cells in a PAR-2-independent manner. [63]
Cockroach serine protease allergen Per a 10 has been shown to activate airway epithelial cells in a PAR-2- dependent manner. [64]

Modulation of Functions of Immune Cells

After crossing the epithelial barrier, protease allergens interact with cells of immune system and can modulate their functioning.

Per a 10 has been shown to potentiate dendritic cells derived T-cell polarization toward type II by upregulating CD86, OX40 L expression and lowered IL-12 secretion. [65],[66]

These lowered IL-12 levels were associated with lower CD40 expression on DCs probably by cleavage of CD40 by Per a 10. [67]

Priming of naive CD4+ T-cells with active Per a 10 pulsed DCs showed high Th2 cytokines IL-4, IL-5, and IL-13 and lowered IL-12 secretion as compared to inactive Per a 10 pulsed DCs. [68]

Der p 1 has also been reported to lower IL-12 expression by monocyte-derived dendritic cells by CD40 cleavage. [68]

A study has also demonstrated that Th2 response development after protease challenge requires a cooperation between DCs and basophils and it occurs through ROS. [69]

Protease allergens can also induce basophils in an IgE-independent manner to produce IL-4 and IL-13. Basophils may act as an early source of IL-4. [70] This early IL-4 is speculated to be involved in the establishment of type 2 immune responses. [71],[72]

Naive T-cells can also act as an early source of IL-4 as they have been shown to express PAR-2 receptors and secrete IL-4 on interaction with papain. [73]

Along with basophils, proteases can also activate MCs leading to the production and secretion of IL-4. [72]

Cleavage of Cell Surface Receptors

Protease allergens promote Th2 responses by hampering Th1 and Treg responses, and this is achieved by cleavage of a myriad of receptors on different cells.

Der p 1 a major cysteine protease from HDM may enhance IgE responses by cleaving CD23 from the surface of activated B-cells. [74]

Membrane-bound CD23 sends a negative feedback signal when bound to IgE that downregulates IgE secretion, cleavage of CD23 switches off this negative feedback signal thereby increasing IgE synthesis. [75]

Subsequently, it has also been demonstrated that Der p 1 can cleave CD25, α -subunit of IL-2 receptor which inhibits IL-2 mediated T-cell proliferation and interferon- γ production thereby shifting the Th1/Th2 balance toward Th2. [76]

Der p 1 has also been shown to cleave DC-SIGN and DC-SIGNR. Cleavage of DC-SIGN reduces binding of DC-SIGN to ICAM-3. [77]

ICAM-3 is an endogenous DC-SIGN receptor expressed by naive T-cells and along with ICAM-1 is involved in DC trafficking, DC-T-cell interaction, and polarization of immune response toward Th1. [78],[79]

DC-SIGN cleavage by Der p 1 can hamper Th1 responses thus favoring Th2 immune responses. [77] Recently, cysteine protease allergen papain has been shown to cleave CD123 (IL-3α), an IL-3 receptor and suppress IL-3 mediated expansion of basophils. However, the implications of CD123 cleavage in allergic responses need further studies. [80]

Neutrophil Serine Proteases in Inflammation: a Friend or a Foe ?!
- Nat. Med. 1998
- Blood. 1999
- Science. 2000
- J. Immunol. 2004
- J. Immunol. 2008
- J.B.C. 2012

CONCLUSIONS

Antibacterial role of neutrophil arsenal

- ➤ Direct killing
- > Inactivation of virulence factors
- > Induction of early responssive cytokines

NEUTROPHIL FUNCTIONS?				
	1,500 - 7,000 cells/µl			
In clinics:				
	High numbers			
	> ALI, COPD			
	Tissue damage			

	NEUTROPHIL FUNCTIONS?	
	1,500 - 7,000 cells/µl	
In clinics:	High numbers ≻ ALI, COPD Tissue damage	
In the lab:	Lung injury	

POTENTIAL THERAPEUTIC STRATEGIES

- ✓ Control of excessive neutrophil recruitment
- Modulation of cell activation/degranulation (e.g., Protease release)
- ✓ Protease inhibition, but with caution

UE: Physiopathologie des Maladies Transmissible

Polynucléaires neutrophiles et défenses anti-infectieuses

Abderrazzak Bentaher, Research Director, Inserm Inflammation et Immunité de l'Epithélium Respiratoire EA7426

azzak.bentaher@inserm.fr

