
Allergie immédiate : épidémiologie, physiopathologie et grands principes diagnostiques & thérapeutiques

Introduction à l'allergie Allergie immédiate & atopie

- Allergie immédiate (HSI): ensemble de manifestations immuno-allergiques survenant chez des individus génétiquement prédisposés (atopie)
- Atopie : terrain génétique prédisposant à la survenue de manifestations allergiques du type immédiat

Introduction à l'allergie Allergie immédiate & atopie

- Allergie immédiate (HSI): ensemble de manifestations immuno-allergiques survenant chez des individus génétiquement prédisposés (atopie)
- Atopie : terrain génétique prédisposant à la survenue de manifestations allergiques du type immédiat, et caractérisé par :
 - une production exagérée d'IgE (totales et spécifiques)
 - une inflammation subaiguë/chronique des organes/tissus cibles
 - induites/entretenues/majorées par les stimulations exercées par les antigènes (.... « allergènes ») et les cofacteurs irritants/adjuvants non spécifiques environnementaux.

Allergie immédiate : épidémiologie

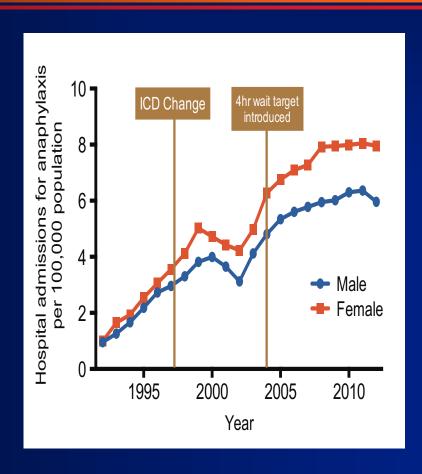
Allergie immédiate

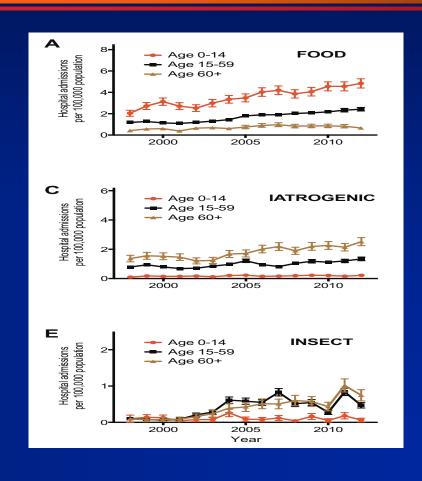
- ▶Prévalence = 15 à 30 % (dans les pays développés)
- >4e rang des maladies chroniques (classification OMS)
 - après les cancers, les maladies cardio-vasculaires et le SIDA
 - bien avant toutes les autres maladies immunologiques (maladies Al, déficits immunitaires primitifs ou acquis, greffes et transplantations)
- ▶Prévalence x 2 à 3 en 30 ans

Ascher IM et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368;733-43.

	Years between Phases	Phase Three		Asthma	symptom	s		Allergi	c rhinocon	junctiviti	is	Eczema	symptom	s	
		Number of children	Response rate (%)	Phase One	Phase Three	Change per year	SE	Phase One	Phase Three	Change per year	SE	Phase One	Phase Three	Thange per year	SE
6-7 year age-group															
Africa (English-speaking)															
Nigeria	7.0	2396	86.2	4.8	5.6	0.10	0.19	3.7	3.6	-0.01	0.17	4.5	5.0	0.07	0.13
Asia-Pacific															
Hong Kong	6.0	4448	96.0	9.1	9∙4	0.03	0.16	13.7	17.7	0.67	0.23	3.9	4.6	0.12	0.09
Indonesia	6.0	2503	88.1	4.1	2.8	-0.21	0.11	3.8	3.6	-0.03	0.12				
Japan	8.0	2958	90.7	17-4	18.2	0.10	0.13	7.8	10.6	0.35	0.11				
Malaysia (3)	6.3	9940	84.1	6∙5	5.8	-0.12	0.07	4.1	4.8	0.11	0.06	9.5	12.6	0.49	0.10
Singapore	7.0	5389	92.0	15∙7	10.2	-0.80	0.25	8.5	8.7	0.02	0.15	2.8	8.9	0.87	0.18
South Korea (2)	5.0	6018	94.7	13.3	5.8	-1.45	0.28	9.8	8.7	-0.18	0.12	8.8	11.3	0.52	0.13
Taiwan	7.0	4832	96.8	9.6	9.8	0.04	0.13	14.6	24.2	1.37	0.17	3⋅5	6.7	0.46	0.08
Thailand (2)	6.0	7315	<i>77</i> ⋅2	8.2	11.9	0.47	0.23	7.3	10.4	0.30	0.25	11.9	16.7	0.79	0.13
Western Europe															
Austria (2)	7.0	6876	87.8	7·8	7.4	-0.05	0.07	5.1	6.1	0.15	0.06	5.7	6.1	0.05	0.06
Belgium	7.0	5645	77.8	7⋅3	7.5	0.02	0.08	4.9	5.8	0.13	0.06	7.7	11.6	0.56	0.09
Germany	5.0	3830	82.4	9.6	12.8	0.65	0.17	5.4	6.9	0.30	0.12	6.7	7.9	0.23	0.12
Italy (6)	8.0	11287	92.5	7⋅5	7.9	0.07	0.05	5.4	6.5	0.15	0.04	5.8	10.1	0.53	0.04
Portugal (3)	7.0	5365	65.1	13.2	12.9	-0.07	0.10	8.7	9.3	0.16	0.10	9.6	9.7	0.09	0.12
Spain (6)	7.3	18 941	77·2	6⋅2	9.5	0.44	0.05	5.4	7.9	0.33	0.04	3.4	5.9	0.31	0.03
UK	5.0	1843	91.9	18.4	20.9	0.50	0.30	9.8	10.1	0.05	0∙24	13.0	16.0	0.60	0.28

Ascher IM et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368;733-43.

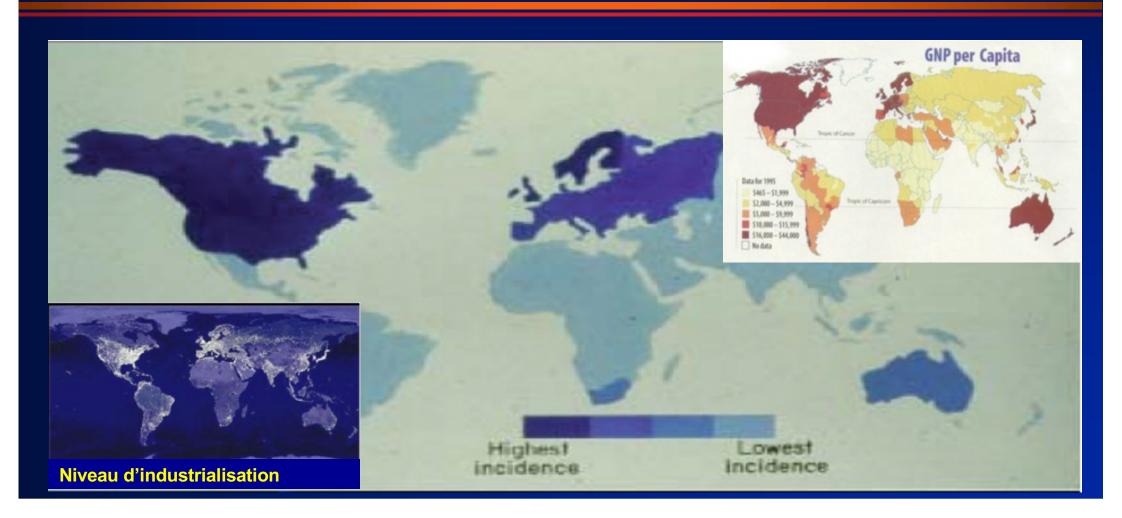

	Years between Phases	Phase Three		Asthma	sympton	15		Allergi sympt	c rhinocor oms	njunctiviti	is	Eczema	sympton	15	
		Number of children	Response rate (%)	Phase One	Phase Three	Change per year	SE	Phase One	Phase Three	Change per year	SE	Phase One	Phase Three	Change per year	SE
13–14 year age-group															
Japan	8.0	2520	94.6	13.4	13.0	-0.05	0.21	14.9	17.6	0.34	0.16				
Malaysia (3)	6.3	8955	91.5	10.1	8.9	-0.13	0.15	13.9	16-2	0.53	0.20	8.9	9.9	0.19	0.17
Philippines	7.0	3658	77·5	12.3	8.4	-0.55	0.24	15.3	11.0	-0.61	0.33	5.2	7.8	0.37	0.13
Singapore	7.0	4217	93.9	9.8	11.4	0.24	0.21	15.1	16.5	0.20	0.22	7.4	9.2	0.25	0.09
South Korea (2)	5.0	10 263	96.4	7.7	8.7	0.20	0.11	10-2	11.6	0.28	0.12	3.8	5.7	0.39	0.08
Taiwan	6.0	6378	95.9	5.4	7.0	0.26	0.07	11.7	17.8	1.02	0.19	1.4	4.1	0.45	0.05
Thailand (2)	6.0	8207	94.6	13.1	11.6	-0.21	0.22	15.5	21.0	0.84	0.37	8.2	9.6	0.39	0.17
Western Europe	•														
Austria	8.0	1439	86.0	11.8	15.1	0.41	0.20	9.2	9.7	0.06	0.17	5.3	7.5	0.28	0.13
Belgium	7.0	3250	96.6	12-0	8.3	-0.52	0.17	14.5	16.9	0.34	0.18	6.7	7.2	0.07	0.11
Channel Islands (2)	5.5	2021	85.1	35.1	26.5	-1.62	0.44	17:3	15.0	-0.45	0.21	17.0	11.0	-1.04	0.23
Germany	5.0	4132	93.9	14-2	17.5	0.68	0.21	14.4	15.0	0.12	0.17	7.1	7.7	0.12	0.12
Isle of Man	6.0	1716	88.7	33.4	31.2	-0.36	0.30	20.1	20-2	0.02	0.28	15.6	11.1	-0.76	0.23
Italy (9)	7.9	11192	92.3	9.4	8.4	-0.22	0.07	14.3	15.5	0.07	0.10	6.2	7.7	0.16	0.05
Portugal (4)	7.8	10630	80.3	9.5	12.0	0.32	0.09	7.0	9.5	0.40	0.08	4.4	5.1	0.16	0.05
Republic of Ireland	8.0	3089	90.9	29.1	26.7	-0.30	0.19	19.3	15.5	-0.48	0.19	13.6	8.6	-0.62	0.11
Spain (8)	7.6	26149	86.1	9.3	9.6	0.04	0.05	13.9	15.0	0.10	0.07	4.1	4.0	-0.01	0.03
UK (6)	7·3	19 226	88-4	31.0	24.7	-0.71	0.14	18-9	15.3	-0.57	0.09	14.7	10.6	-0-39	0.08


Allergie immédiate : épidémiologie

Allergie immédiate

- **▶Prévalence = 15 à 30 % dans les pays développés**
- >4^e rang des maladies chroniques (classification OMS)
 - après les cancers, les maladies cardio-vasculaires et le SIDA
 - bien avant toutes les autres maladies immunologiques (maladies Al, déficits immunitaires primitifs ou acquis, greffes et transplantations)
- ▶Prévalence x 2 à 3 en 30 ans
- Fréquence des formes graves et (potentiellement) fatales x 4 à 5 en 30 ans (asthme, allergie alimentaire)

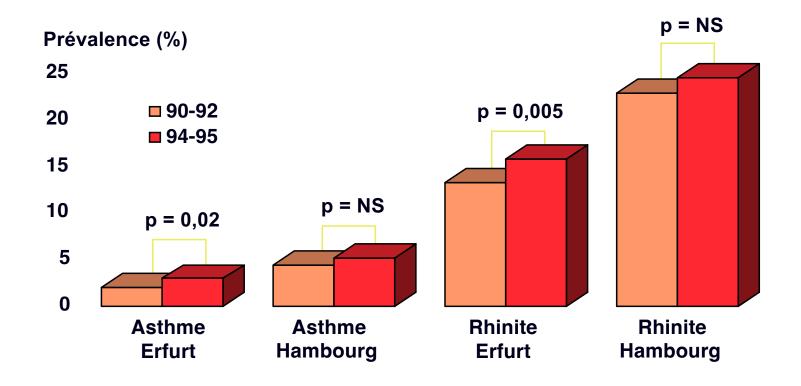
Time trends in hospital admissions/100 000 individuals in the UK national anaphylaxis registry (Turner PJ et al. JACI 2015;135:956-63).

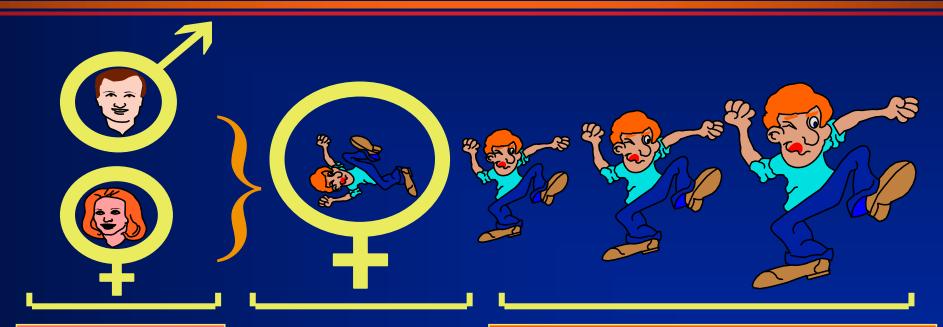



Epidémiologie de l'allergie

1) Facteurs susceptibles d'expliquer l'augmentation de prévalence des maladies allergiques, depuis une trentaine d'années, dans les pays à mode de vie occidental ou en voie d'occidentalisation

Influence (des modifications) du mode de vie et de l'environnement sur l'augmentation de prévalence des maladies allergiques (= maladies de « civilisation »)


Epidémiologie (1): principaux facteurs responsables de l'augmentation de l'allergie


Fréquence des gènes

Influence des modifications du mode de vie et de l'environnement sur l'augmentation de prévalence des maladies allergiques

 Modifications de la prévalence des maladies allergiques chez les écoliers d'Allemagne de l'Est (Erfurt) et d'Allemagne de l'Ouest (Hambourg)

Epidémiologie (1): principaux facteurs responsables de l'augmentation de l'allergie

Fréquence des gènes

Prise de conscience et diagnostic augmentés

Modifications liées au mode de vie et de l'environnement (western life style, american way of life) :

- exposition aux allergènes (quantitative et qualitative)
- exposition aux polluants/irritants/adjuvants non spécifiques —» modification des allergènes, perméabilité des revêtements, inflammation non spécifique, modifications épigénétiques, etc.

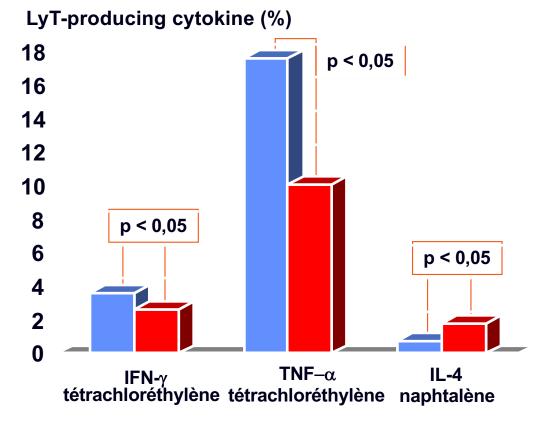
Alm et al. Atopy in children of families with anthroposophic lifestyle. Lancet 1999; 353: 1485-1488.

- Matériel & méthodes : comparaison de la prévalence de l'atopie, estimée par les prick-tests et les RAST aux aéro-allergènes courants, chez :
 - > les enfants vivant dans des familles anthroposophiques (n = 295)
 - > les enfants vivant dans des familles classiques (n = 380)
- Résultats : prévalence de l'atopie significativement diminuée chez les enfants vivant dans des familles anthroposophiques (RR = 0,62)
- Facteurs liés à un mode de vie « à l'ancienne »
 - allaitement maternel généralement prolongé
 - > mode de nutrition (aliments frais et fermentés)
 - > taille de la fratrie souvent importante
 - > tabagisme limité
 - habitat rural/semi-rural fréquent
 - accouchement à domicile fréquent
 - > recours limité à l'antibiothérapie
 - vaccinations limitées à un strict minimum
 - > etc.

Stein MM et al. Innate immunity and atopy & asthma risk in Amish and Hutterite farm children. N Engl J Med 2016; 375: 411-21.

Amish: mode de vie « ancien/traditionnel »

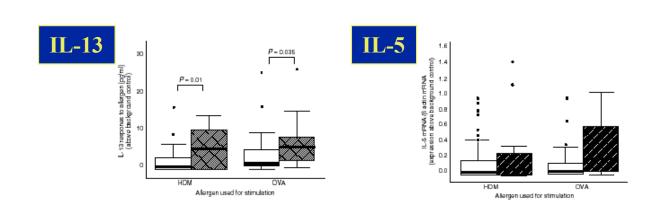
Hutterites: mode de vie plus « moderne »


Table 1. Demographic and Clinical Characteristics of the Study Populations.*					
Characteristic	Amish (N=30)	Hutterite (N=30)			
Age (yr)					
Median	11	12			
Range	8–14	7–14			
Girls (no.)	10	10			
Sibships (no.)	15	14			
Children with asthma (no.)	0	6			
Positivity for allergen-specific IgE (no.)					
>0.7 kUA/liter	5	9			
>3.5 kUA/liter	2	9			
Serum IgE (kU/liter)					
Median	21	64			
Interquartile range	10–57	15–288			

Lehmann I. et al. The influence of maternal exposure to volatile organic coumpounds on the cytokine production profile of neonatal T cells. Environ Toxicol 2002; 17: 203-210.

- expression des cytokines
 Th1 et Th2 (IFN-γ, TNF-α,
 IL-4) par les LyT du sang de cordon, après activation par le PMA
- corrélations avec les taux de polluants domestiques dans l'habitat pendant la période périnatale

Pollution domestique


- **■** ≤ 75 percentile
- > 75 percentile

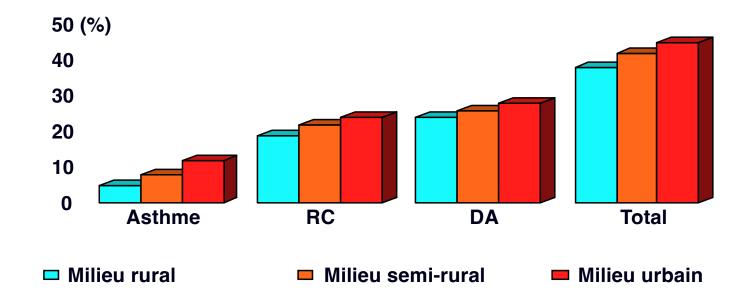
Influence du tabagisme passif pré-natal sur le risque atopique chez l'enfant

Noakes et al. Maternal smoking during pregnancy alters neonatal cytokine responses. Allergy 2003; 58: 1053-58.

Dosage des cytokines produites, après activation par les allergènes, par les cellules mononucléées du sang de cordon de nouveau-nés de femmes tabagiques (barres grises) et non tabagiques (barres claires) pendant la grossesse.

—» Le tabagisme passif in utero oriente les réponses immunitaires fœtales aux allergènes vers des réponses du type Th2, susceptibles de favoriser le développement de l'atopie

Epidémiologie de l'atopie : influence de l'allaitement maternel prolongé (Chandra et al, 1997)


Matériel et méthodes

- » 288 nourrissons à risque élevé d'atopiesuivis jusqu'à l'âge de 5 ans
- » bilan (histoire clinique, TC, RAST, TP) effectué à l'âge de 5 ans
- **Résultats** (%): prévalence des maladies atopiques, à l'âge de 5 ans, selon le type d'allaitement pendant les 6 premiers mois de la vie

allaitement	all. aliment.	DA	asthme
maternel exclusif	13,3	20	6
hydrolysat de PLV	13,2	25	12
lait de vache	36	43	28
lait de soja	28	39	26

Allergic disease in teenagers in relation to urban or rural residence at various stages of childhood (Nilsson, L et al, 1999)

 Fréquence des maladies allergiques à 13-14 ans selon le milieu de vie pendant les 2 premières années

Relations entre exposition et sensibilisations aux acariens domestiques chez les enfants atteints de DA (Ricci et al, 1999)

- Matériel & méthodes :41 enfants (2-10 ans) atteints de DA ± sévère
 - » tests d'allergie aux acariens : CAP-RAST, prick-tests et patch-tests
 - » ELISA: dosage de Der p 1 dans la literie (μg/g de poussière)
- Résultats des tests (%) selon les concentrations de Der p 1

Tests/Der p 1	< 0,1 μg/g	<mark>0,1-2 μg/g</mark>	> 2 μg/g	Total
RAST	9 %	15 %	70 %	27 %
prick-tests	18 %	20 %	50 %	27 %
patch-tests	44 %	40 %	78 %	52 %
total	36 %	40 %	90 %	51 %

Influence du tabagisme passif post-natal sur le risque atopique chez l'enfant (Yao et al. Allergy 2016)

 Relations entre tabagisme parental post-natal, concentrations de cotinine sérique et risque de sensibilisation allergénique (1315 enfants taiwanais tout-venants suivis depuis la naissance jusqu'à 7 ans: dosages de cotinine et IgE spécifiques)

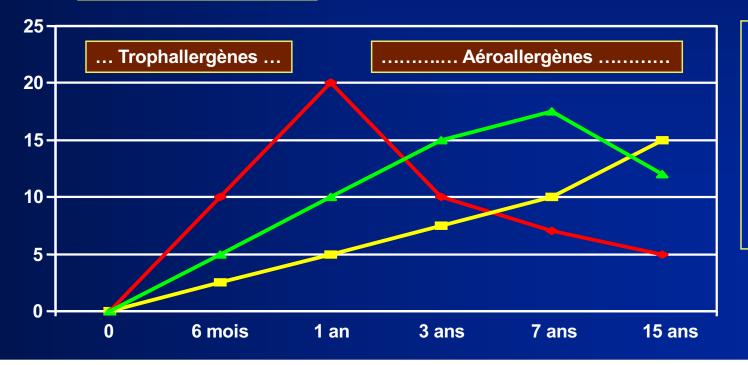
Table 2 Association between serum cotinine levels and IgE sensitization against categories of allergens*

Category of allergens [†]	No. (%)	Crude OR (95% CI)	P	Adjusted OR (95% CI)‡	P [‡]
Mites	938 (71.3)	1.22 (0.47–3.12)	0.69	0.89 (0.35–2.26)	0.81
Animals	184 (14.0)	2.90 (1.12-7.50)	0.03	2.53 (0.92-6.93)	0.07
Cockroaches	210 (16.0)	4.11 (1.61-10.46)	0.003	3.77 (1.49-9.51)	0.005
Mold	307 (23.3)	0.91 (0.34-2.45)	0.85	0.82 (0.29-2.33)	0.71
Pollen	403 (30.6)	3.27 (1.35-7.93)	0.009	2.84 (1.20-6.73)	0.02
Foods	834 (63.4)	7.57 (2.25-25.45)	0.001	4.95 (1.59-15.34)	0.006
Latex	10 (0.8)	2.47 (0.11–53.54)	0.56	2.23 (0.13-37.13)	0.58

Table 4 Association between serum cotinine levels and the number of IgE sensitization or the sum of specific IgE concentrations against categories of allergens*

	Number of IgE sensitization		Sum of specific IgE concentration		
Category of all ergen [†]	Adjusted OR (95% CI) ¹	ρl	Adjusted β (SE) ⁸	pl	
All allergers combined	3.31 (1.51-7.24)	0.003	0.24 (0.09)	0.008	
Mites	0.92 (0.43-1.96)	0.82	0.09 (0.08)	0.26	
Animals	2.38 (D.87-6.48)	0.09	-0.003 (D.005)	0.57	
Cockroaches	3.79 (1.51-9.51)	0.004	0.02 (0.000)	0.04	
Mold	0.75 (0.26-2.17)	0.80	-0.006 (D.008)	0.32	
Pollen	3.09 (1.39-6.90)	200.0	0.04 (0.02)	0.09	
Foods	4.98 (2.29-10.82)	<0.001	0.07 (0.01)	<0.001	
Latiox	2.23 D.13-37.13)	0.58	0.007 (0.000)	0.27	

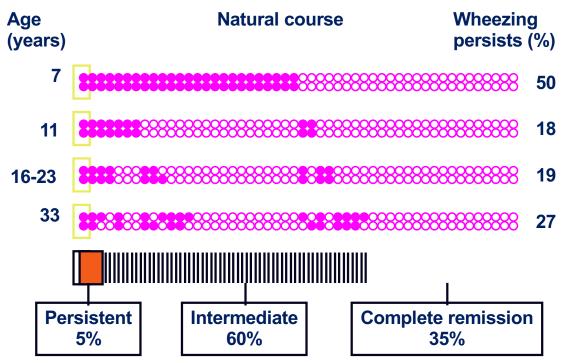
Epidémiologie de l'allergie


- 1) Facteurs susceptibles d'expliquer l'augmentation de prévalence des maladies allergiques, depuis une trentaine d'années, dans les pays à mode de vie occidental ou en voie d'occidentalisation
- 2) Histoire naturelle de l'allergie

Histoire naturelle de l'allergie

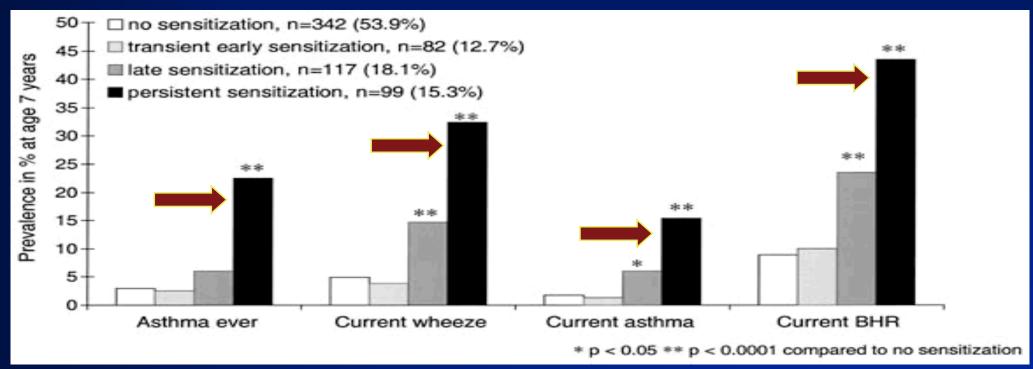
• 1.1. Principales manifestations cliniques et principaux allergènes de l'allergie en fonction de l'âge (%tage de patients/populationgénérale)

Allergènes prédominants



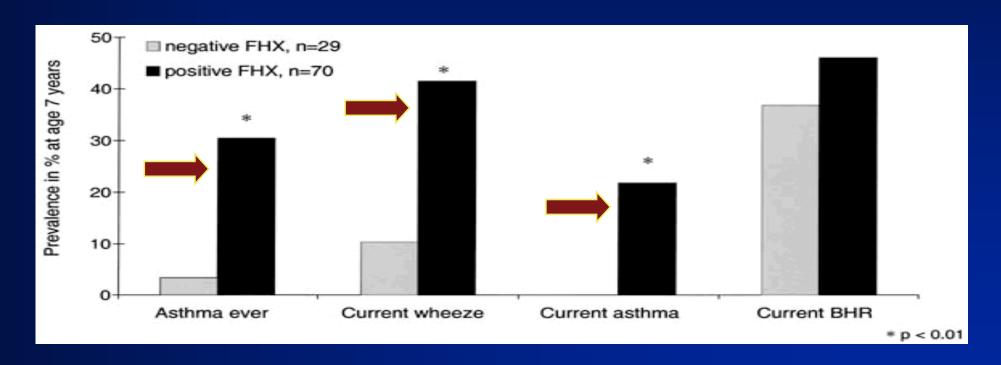
De nombreux patients présentent simultanément ou en alternance plusieurs types de symptômes et de sensibilisation

1) Histoire naturelle de l'allergie


• 1.2. Que deviennent les allergiques ?

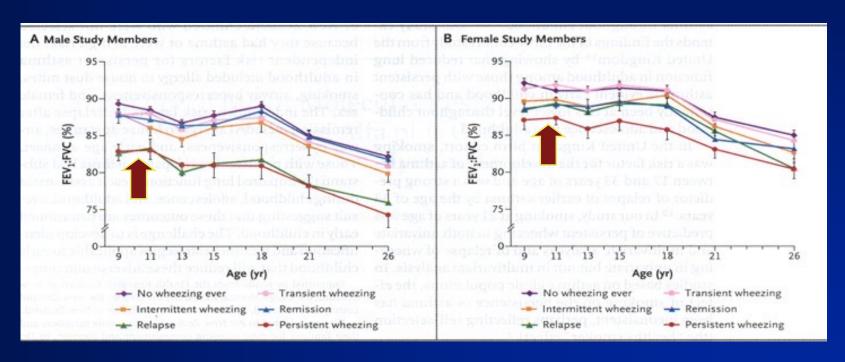
 Exemple-type de l'asthme ... "Asthma can be a lifelong disease..." (Strachan et al. BMJ 1996)

Histoire naturelle de l'allergie


1. Facteurs de risque de persistance/récidive de l'asthme allergique?

Existence d'une atopie personnelle, avec sensibilisations précoces (aux aliments) et persistantes (aux aéro-allergènes) = risque accru (++) d'asthme à 7 ans

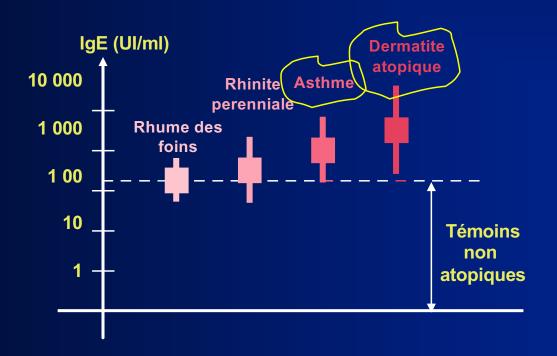
1) Histoire naturelle de l'allergie


2. Facteurs de risque de persistance/récidive de l'asthme allergique?

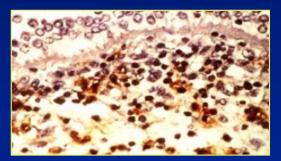
Atopie personnelle (sensibilisation persistante) + terrain familial (asthme maternel) = risque accru (+++) d' asthme à 7 ans

1) Histoire naturelle de l'allergie

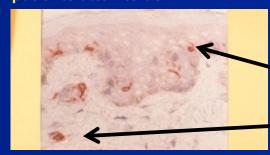
3. Facteurs de risque de persistance/récidive de l'asthme allergique?


Gravité initiale de la maladie allergique : Mean (\pm SE) FEV₁/FVC Ratios Measured at 9, 11, 13, 15, 18, 21 and 26 years in male (Panel A) and female (Panel B) study members, according to the pattern of wheezing (Sears MR et al. N Engl J Med 2003;349:1414-22)

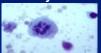
Introduction à l'allergie Allergie immédiate & atopie


- Allergie immédiate (HSI): ensemble de manifestations immuno-allergiques survenant chez des individus génétiquement prédisposés (atopie)
- Atopie : terrain génétique prédisposant à la survenue de manifestations allergiques du type immédiat, et caractérisé par :
 - une production exagérée d'IgE
 - une inflammation subaiguë/chronique des organes/tissus cibles

Concentrations des IgE sériques totales et inflammation subaiguëchronique dans les maladies dans liées à une allergie immédiate


Concentrations des IgE sériques totales dans les diverses manifestations cliniques liées à une allergie immédiate

Inflammation éosinophilique bronchique (coupe de bronche de patient atteint d'asthme allergique)

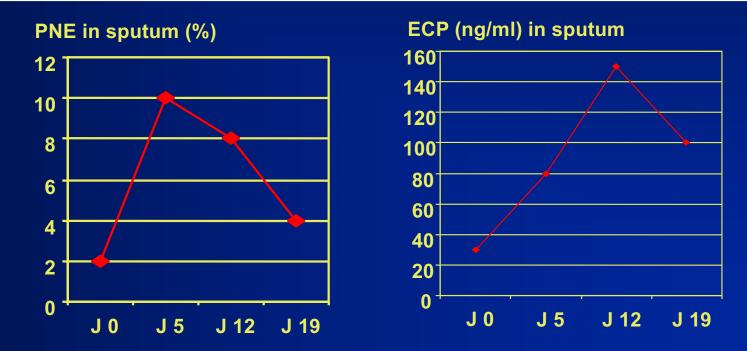


Cellules IgE⁺ dans la peau des patients atteints de DA

Mastocyte

Lymphocytes (Th2 et B à IgE)

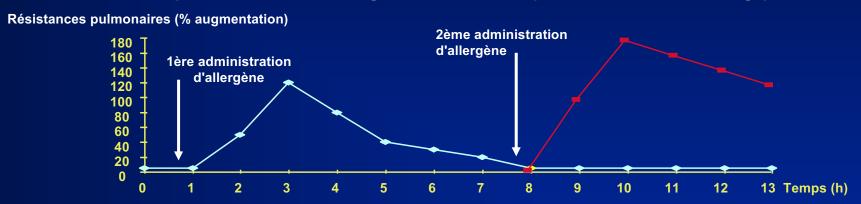
Macrophage

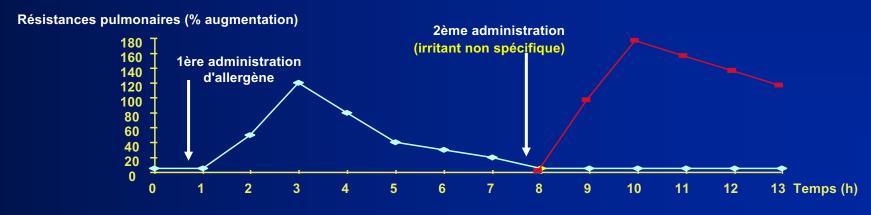

Basophile

Cellules de Langerhans

Mastocytes, éosinophiles

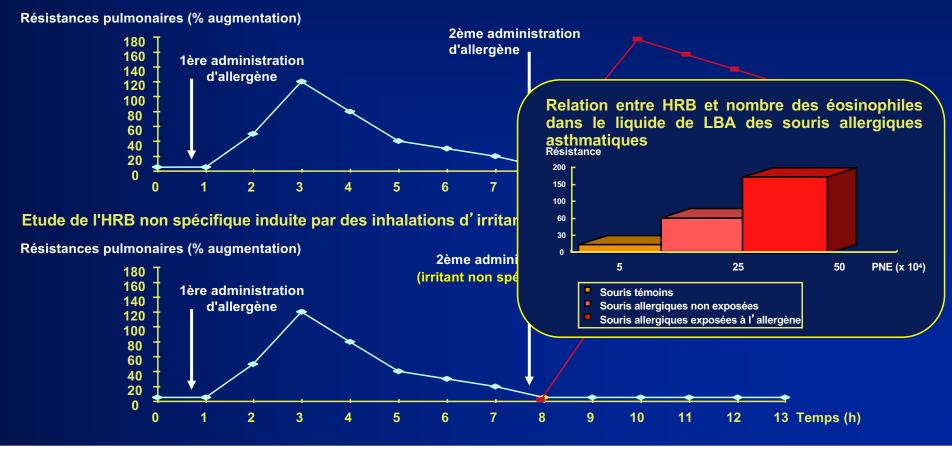
Physiopathologie de la réaction allergique du type immédiat (inflammation subaiguë/chronique des organes et tissus-cibles)


De Kluijver et al. Asymptomatic worsening of airway inflammation during low dose allergen exposure in asthma: protection by inhaled steroids. AJRCCM 2002; 166: 294-300


PNE and ECP levels in sputum during and after a 10-days course of VLDA inhalation

Hyperréactivité des organes et tissus cibles dans l'allergie immédiate

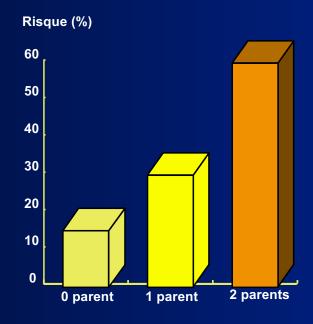
Etude de l'HRB induite par des inhalations d'allergène chez des souris préalablement rendues allergiques

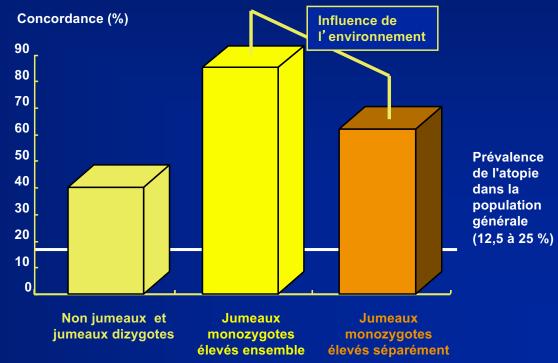


Etude de l'HRB non spécifique induite par des inhalations d'irritants chez des souris allergiques

Hyperréactivité des organes et tissus cibles dans l'allergie immédiate

Etude de l'HRB induite par des inhalations d'allergène chez des souris préalablement rendues allergiques


Génétique de l'atopie Méthodes d'étude


Etudes de familles :

- études de la transmission de parents à enfants
- études de concordance dans les fratries
- —» mise en évidence d'une transmission génétique
- Etudes chromosomiques & génomiques de populations sélectionnées ou non :
 - --- mise en évidence d'associations avec :
 - des marqueurs chromosomiques particuliers (gènes candidats)
 - des gènes particuliers (gènes de classe II)

Génétique de l'atopie Etudes de familles

 Etudes de la transmission des parents aux enfants (risque pour un enfant d'être allergique en fonction des antécédents parentaux) Etudes de concordance entre enfants de mêmes parents

Génétique de l'atopie Gènes incriminés

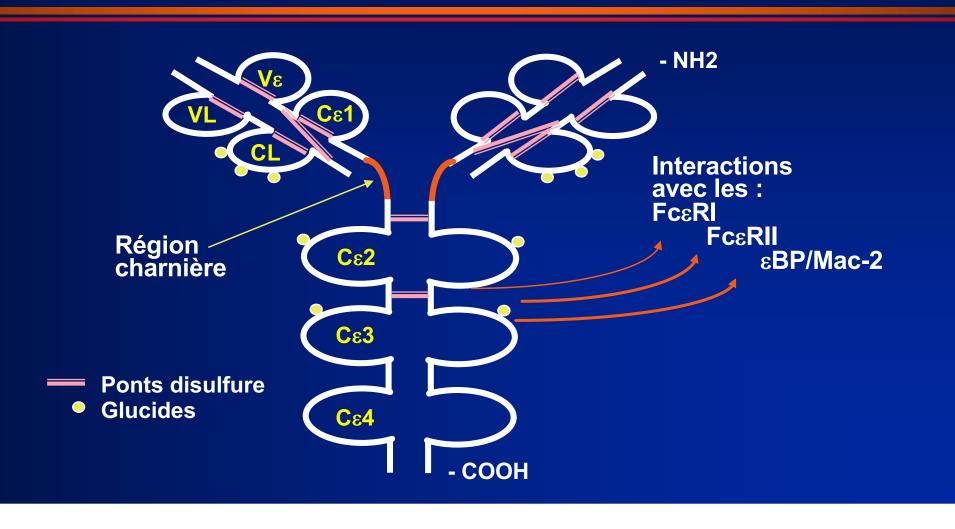
```
Principaux gènes de "classe II" —» capacité de réponse immunitaire spécifique :
```

- Gènes HLA de classe II (chromosome 6) :
 - HLA-DR1 (Fel d I) HLA-DR2 (Amb a V) HLA-DR3 (Bet v I, Lol p I)
 - HLA-DR4 (Alt a I) HLA-DR5 (Amb a VI) HLA-DR7 / DQ2 (olivier)
- Gènes $V\alpha/\beta$ (8.1) du TCR (chromosome 14) : Der p I, Der p II, Fel d I
- Gènes V_H(5) des chaînes lourdes des immunoglobulines ?

	ènes des "classes I, III & IV" —» production des IgE et inflammation- ité des organes cibles
Chr. 5(q)	- gènes du locus IL-3, IL-4, IL-5, GM-CSF et IL-4R

3111. 3(q)	- gènes de l'IL-9 et de l'IL-13
Chr. 16(p12)	- gène de l'IL-4R
Chr. 6	- gènes du TNFα/β
Chr. 12	- gènes de l' IFNγ
Chr 1	gànas du lacus promotours de l'II 10 et du TGE

Gènes de susceptibilité/diverses maladies allergiques


(intégrité des revêtements, fonctions physiologiques, inflammation, etc.)

Specific genes implicated in asthma:

- ORMDL3 (ORMDL Sphingolipid Biosynthesis Regulator 3) is a gene that is strongly associated with early-onset asthma – leading to high levels of IgE.
- HLA-DQ(A1/B1) is the αβ heterodimer of type MHC class II found on antigen-presenting cells, involved in autoimmune conditions including coeliac disease and diabetes mellitus type 1. Mutations within this gene are involved in late-onset asthma.
- ADAM33 (A Disintegrin and Metalloproteinase 33) is expressed strongly in bronchial smooth muscle cells and lung fibroblasts and is involved in airway hyperresponsiveness and decreased lung function.
- Filaggrin is a gene involved in the maintenance of skin barriers and mutations are typically involved in atopic dermatitis & ichthyosis Vulgaris. Having mutations in this gene usually increases the risk of skin conditions, but also increases the risk of asthma and hay fever on top of those.
- Other commonly implicated genes include (non-exhaustive list):
 - IL1RL1 Interleukin 1 Receptor Like 1 (receptor)
 - O IL33 Interleukin-33 (cytokine)
 - SMAD3 SMAD Family Member 3 (intracellular signal transducer protein)
 - O IL2RB Interleukin 2 Receptor Subunit B (receptor subunit)
 - SPINK5 Serine Peptidase Inhibitor Kazal Type 5 (multidomain serine protease inhibitor)
 - O VDR Vitamin D Receptor (receptor)
 - O DPP10 Dipeptidyl Peptidase Like 10 (membrane protein)
 - O PHF11 Ph.D. Finger Protein 11 (Ph.D. type zinc finger)
 - HLA-G Human Leukocyte Antigen G (MHC)
 - IL13 Interleukin-13 (cytokine)
 - O GPR15 G Protein-Coupled Receptor 15 (receptor)
 - O TLR2/4/6/9/10 Toll-Like Receptors 2, 4, 6, 9 & 10 (receptors)

TABLE II. Candidate gene		
Study	Gene symbol	Gene name
Palmer et al, ⁴⁶ 2006	FLG	Filaggrin
Jones et al,48 2006	CTLA4	Cytotoxic
Moffatt et al,49 2005	TLR9	T lymphocyte–associated 4 Toll-like receptor 9
Ahmad-Nejad et al, 50 2004	TLR2	Toll-like receptor 2
Nichio et al. 51 2001	IRF2	Interferon regulatory factor 2
Nishio et al, ⁵¹ 2001 Lange et al, ⁵² 2005	CD14	Monocyte differentiation
		antigen CD14
Rafatpanah et al, ⁵³ 2003	GM-CSF	Granulocyte-macrophage
		colony-stimulating factor
Tsunemi et al,45 2002	IL13	IL-13
Liu et al,41 2000	IL13	IL-13
Kawashima et al,40 1998	IL4	IL-4
Walley et al, ²⁴ 2001	SPINK5	Serine protease inhibitor, Kazal type 5
Nishio et al, ⁴⁵ 2003	SPINK5	Serine protease inhibitor, Kazal type 5
Kato et al,44 2003	SPINK5	Serine protease inhibitor, Kazal type 5
Weidinger et al,36 2005	CARD4	Caspase recruitment domain—containing protein 4
Cox H et al, ⁶ 1998	Fc∈RIβ	β Chain of the high-affinity receptor for IgE
Moffatt et al, ⁵⁴ 1992	Fc∈RIβ	β Chain of the high-affinity
,		receptor for IgE
Novak et al, ⁵⁵ 2005	IL18	IL-18
Chae et al,43 2003	TIM1	T-cell immunoglobulin- and
		mucin domain—containing molecule 1
Jang et al, ³⁹ 2005 Mao et al, ³⁴ 1996	PHF11	PHD finger protein 11
Mao et al,34 1996	MCC	Mast cell chymase
Mao et al,35 1998	MCC	Mast cell chymase
Tanaka et al, ⁵⁶ 1999	MCC	Mast cell chymase
Iwanaga et al,57 2004	MCC	Mast cell chymase
Weidinger et al,36 2005	MCC	Mast cell chymase
Oiso et al, ⁵⁸ 2000 Hosomi et al, ⁵⁹ 2004	IL4R	IL-4 receptor α chain
Hosomi et al,59 2004	IL4R	IL-4 receptor α chain
Kabesch et al,47 2003	CARD15	Caspase recruitment domain—containing
Nickel et al, ³⁷ 2000	RANTES	protein 15 Regulated on activation, normally T cell expressed and secreted
Tsunemi et al,38 2002	EOTAXIN	Eotaxin
Arkwright et al.60 2001	TGFB1	TGF-β1
Vasilopoulos et al, ⁶¹ 2004	SCCE	Stratum corneum
62		chymotryptic enzyme
Vavilin et al, ⁶² 2003	GSTT1	Glutathione S-transferase, Theta-1

Les anticorps de l'allergie immédiate Les IgE : structure

Les anticorps de l'allergie immédiate Les IgE : propriétés & fonctions

Propriétés générales :

- » PM = 190 000
- » Teneur en glucides = 12 %
- » Traversée du placenta = 0

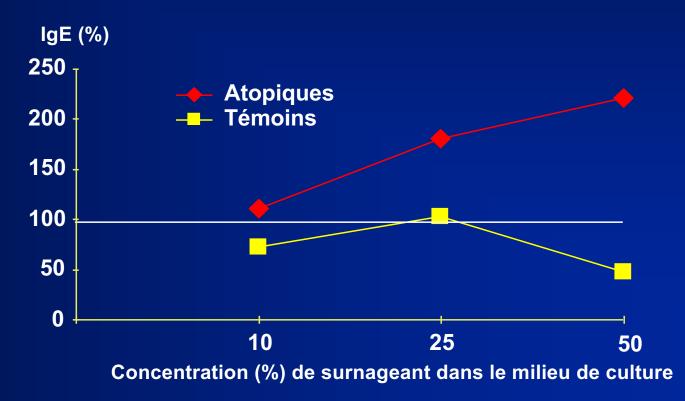
Complexes immuns IgE maternelles-IgG anti-IgE

- » Activation du complément par la voie directe = 0
- » Taux sérique normal < 200 à 250 UI / ml (après 10 à 12 ans)</p>
- » Demi-vie :
 - IgE sériques = 2,5 jours
 - IgE fixées sur les cellules > 3 à 4 semaines

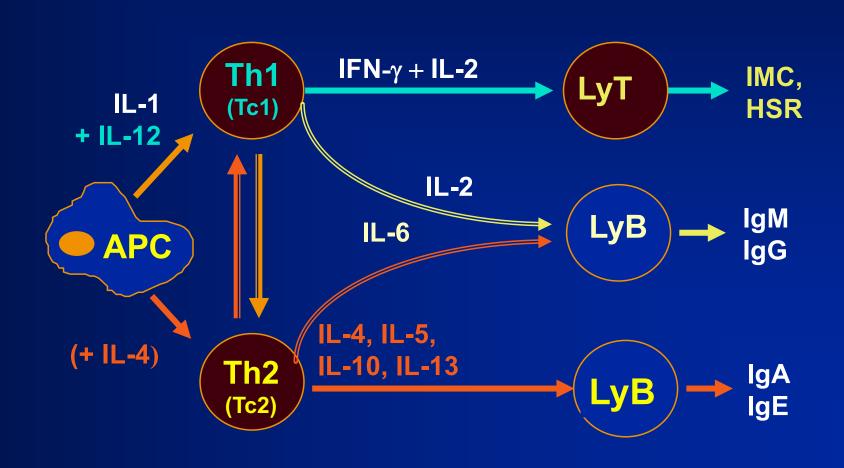
Fonctions physiologiques :

- » Défense antiparasitaire (helminthes)
- » Epuration des complexes immuns circulants (?)
- » Défense antitumorale (?)

Récepteurs des IgE


Récepteurs	Structure	Cellules porteuses	Propriétés
FcεRI	4 chaînes	Mastocytes & basophiles	Affinité forte
	3 chaînes	Eosinophiles, neutrophiles, monocytes et macrophages, cellules dendritiques et de Langerhans, cellules NK	Expression variable, modulée par les (CI à) IgE et les cytokines
Fce-RII (CD23)	3 chaînes identiques entrelacées	LyBs et LyTs Eosinophiles, neutrophiles, monocytes et macrophages, cellules de Langerhans, plaquettes	Affinité faible Expression variable, modulée par les (CI à) IgE et les cytokines Forme soluble (sCD23)
εBP / Mac-2 (galectine)	≥ 2 chaînes identiques entrelacées	Mastocytes & basophiles, éosinophiles, neutrophiles, macrophages, etc.	Affinité faible Forme soluble (sεΒΡ)

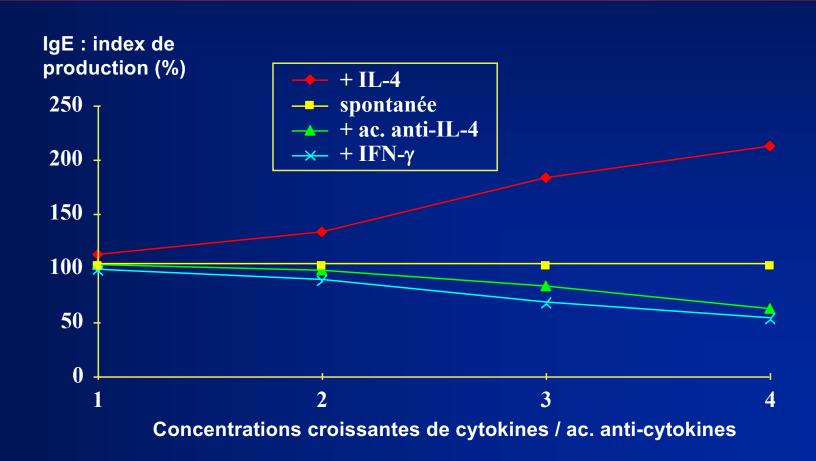
Physiopathologie de l'allergie immédiate


- Dysrégulation de la synthèse des IgE
- Physiopathologie de la réaction allergique et de l'hyperréactivité des organes et tissus cibles

Dysrégulation de la synthèse des IgE chez les atopiques (notion de dysrégulation immunitaire)

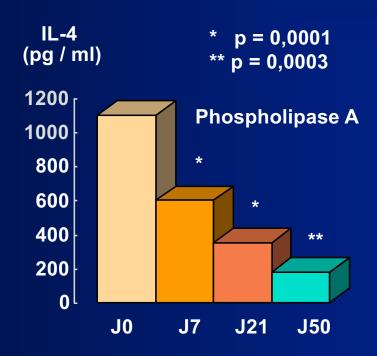
 Effets des surnageants de culture des LyT provenant de malades atopiques et de sujets témoins sur la production in vitro des IgE par les LyB humains

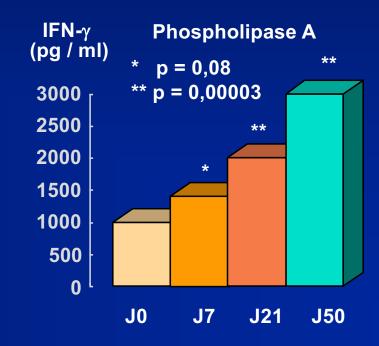
Schéma général des réponses immunitaires

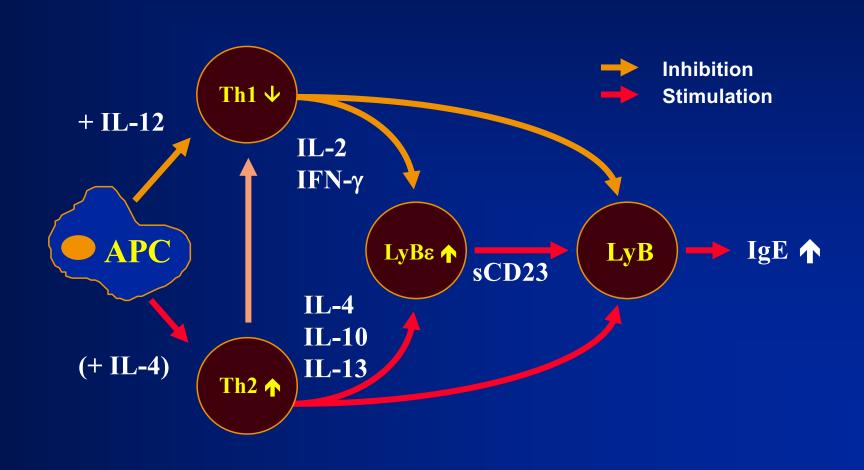

Observations démontrant le rôle des cytokines dans la régulation de la synthèse des IgE

- Corrélations entre les capacités de production des cytokines par les cellules mononucléées sanguines, la concentration des IgE sériques, et la sévérité de la maladie allergique
- Effets in vitro des cytokines, anticorps anti-cytokines et antagonistes des cytokines sur la production des IgE
- Corrélations entre l'efficacité de la DS et les modifications de l'expression / la production des cytokines régulant la production des IgE

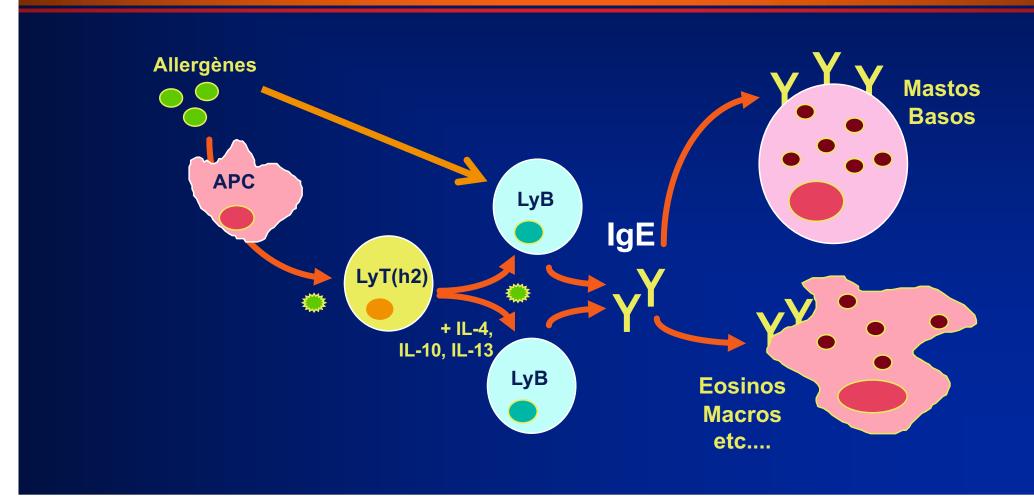
Observations démontrant le rôle des cytokines dans la régulation de la synthèse des IgE : corrélations entre la production des cytokines et la concentration des IgE (totales)

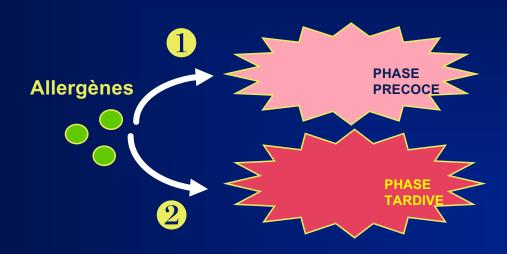

Concentration sérique	Asthme allergique	Témoins	p <
IL-4 (pg/ml)	2,35 ± 0,26	1,08 ± 0,15	0,01
sCD23 (ng/ml)	35 ± 15	2 ± 0,5	0,001
IgE (UI/mI)	830 ± 312	47 ± 17	0,001


Observations démontrant le rôle des cytokines dans la régulation de la synthèse des lgE : effets in vitro des cytokines sur la production des lgE par les lymphocytes B humains atopiques activés par l'allergène


Observations démontrant le rôle des cytokines dans la régulation de la synthèse des lgE : la DS induit une normalisation de la production des cytokines impliquées dans la régulation de la production des lgE

In : Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN- γ secretion in specific allergen-stimulated T cell cultures (Jutel et al, 1995 : J. Immunol, 154, 4187 - 4194)


Anomalies de la régulation de la production des IgE dans l'atopie

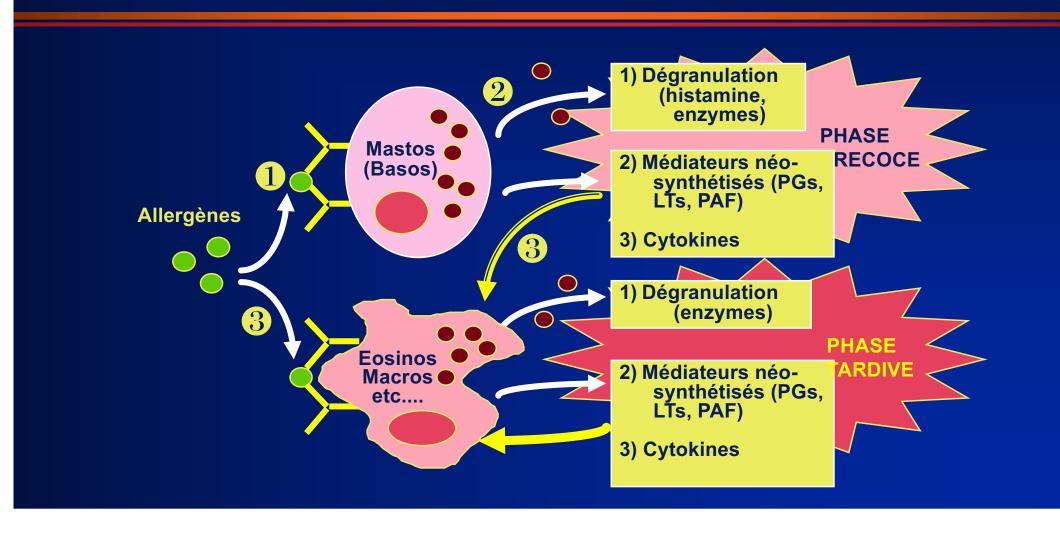

Physiopathologie de l'allergie immédiate

- Dysrégulation de la synthèse des IgE
- Physiopathologie de la réaction allergique et de l'hyperréactivité des organes et tissus cibles

Immunopathogénie de l'allergie immédiate 1) Phase de sensibilisation

Immunopathogénie de l'allergie immédiate 2) Déclenchement

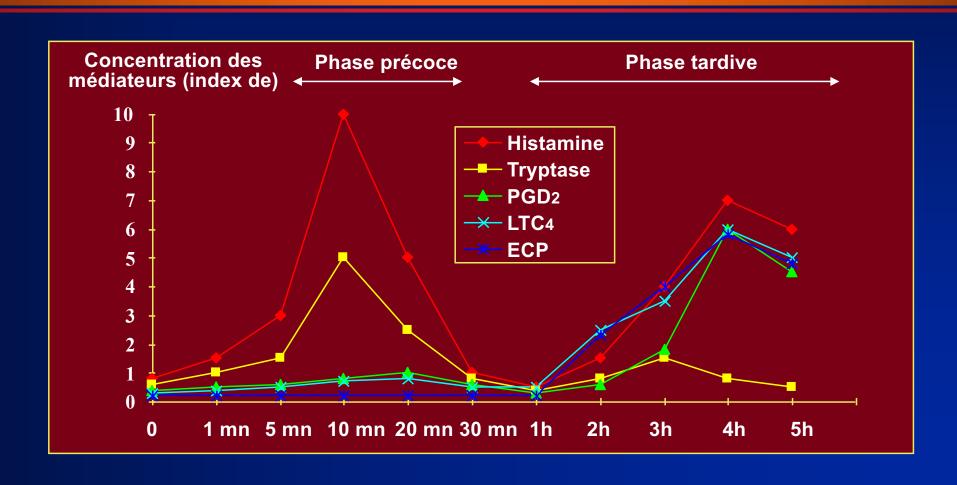
 TPN spécifique chez un patient atteint de rhinite allergique


Réaction	précoce		tardive				
	avant	10 -4 μ g	10 -³ μ g	2h	12h	24h	36h
Score clinique							
- éternuements	0	1	10	5	2	0	0
- rhinorrhée	0	0	++	++	+	+	0
- obstruction	±	+	+	++	++	++	+
Résistances							
(cm H2O/I/sec)	2,1	3,7	9,3	15	ND	ND	ND

Vikram S. : garçon cingalais de 11 ans, consultant pour rhinite et asthme allergique à la blatte

* TPN à la blatte

Réaction	précoce			tardive			
	avant	10 -4 μ g	10 -3 μ g	2h	12h	24h	36h
Résiatances							
(cm H2O/I/sec)	2,1	3,7	9,3	15	ND	ND	ND
Score clinique							
- éternuements	0	1	10	5	2	0	0
- rhinorrhée	0	0	++	++	+	+	0
- obstruction	±	+	+	++	++	++	+
Cytologie							
- cellularité	faible	faible	modérée	forte	forte	forte	forte
- neutrophiles	99 %	90 %	65 %	63 %	50 %	40 %	70 %
- éosinophiles	1 %	8 %	30 %	35 %	40 %	50 %	20 %
- autres cellules	0 %	2 %	5 %	2 %	10 %	10 %	10 %


Immunopathogénie de l'allergie immédiate 2) Déclenchement

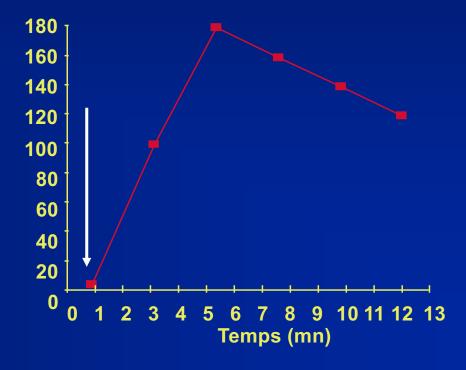
Physiopathologie de l'allergie immédiate Principaux médiateurs et enzymes (classification)

Médiateurs & enzymes	Intragranulaires	Néoformés
Cellules	(préformés)	(synthétisés)
Mastocytes	histamine	PGD2, PGF2α, TXs
	tryptase	LTB4, LTC4, LTD4, LTE4
	chymase	PAF
Basophiles	histamine	PGD2, PGF2α, TXs
Eosinophiles	MBP, ECP, EDN	PGD2, PGF2α, TXs
et		LTB4, LTC4, LTD4, LTE4
autres cellules		PAF

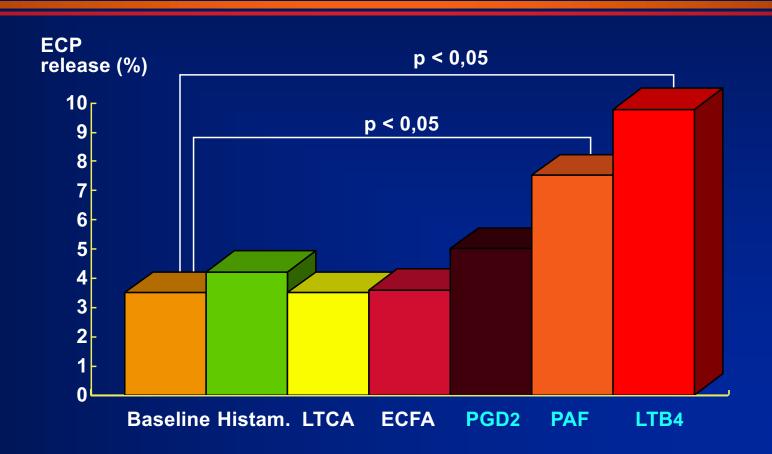
Cinétique de libération des médiateurs et enzymes lors des TPN spécifiques dans la rhinite allergique

Physiopathologie de l'allergie immédiate Principaux médiateurs et enzymes (activités biologiques)

Médiateurs	Effets sur					
	Vaisseaux	Muscle lisse	Epithelium	Leucocytes	Coeur	
Histamine	VD et PC ↑	Contraction	Mucus 🛧	Chimiotactisme	Cond. AV ↓	
				et activation	Rythme 🛧	
PAF	VD et PC ↑	Contraction		Chimiotactisme et activation	Arythmie	
PGF2 α		Contraction				
PGD2	VD et PC ↑	Contraction		Chimiotactisme		
TXA2		Contraction		et activation		
LTB4				Chimiotactisme		
				et activation		
LTC4, D4, E4	VD et PC ↑	Contraction	Mucus 🛧	Activation (±)	Contraction ↓	

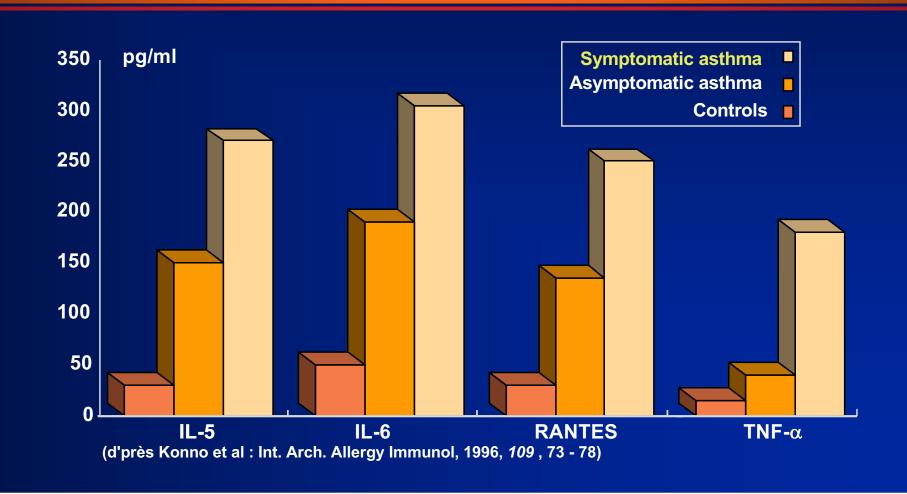

Activités biologiques de l'histamine

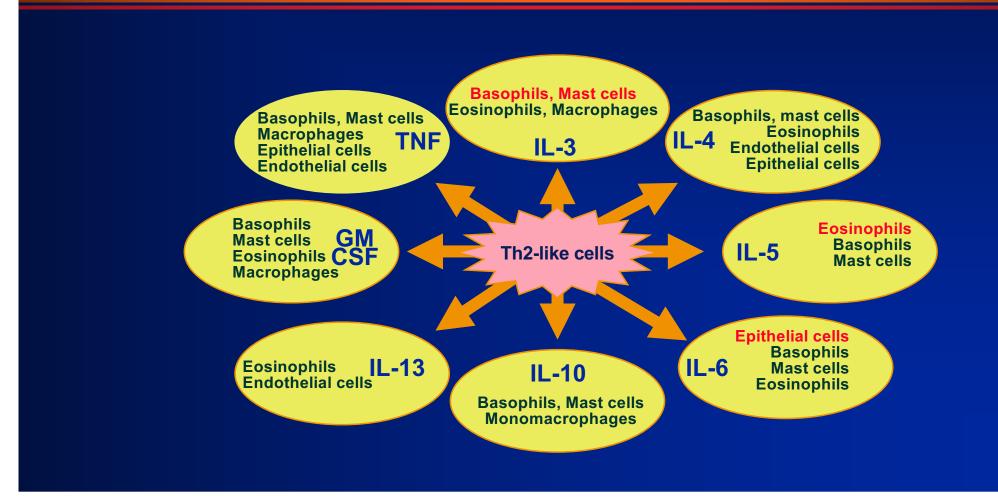
Effets vaso-actifs



Etude du bronchospasme induit par l'inhalation d'histamine chez la souris

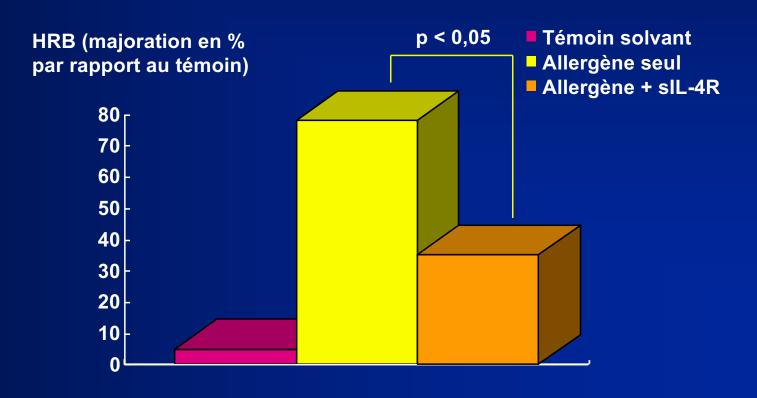
Résistances (% augmentation)


Physiopathologie de la réaction allergique du type immédiat (Effets des médiateurs mastocytaires sur l'activation des éosinophiles)

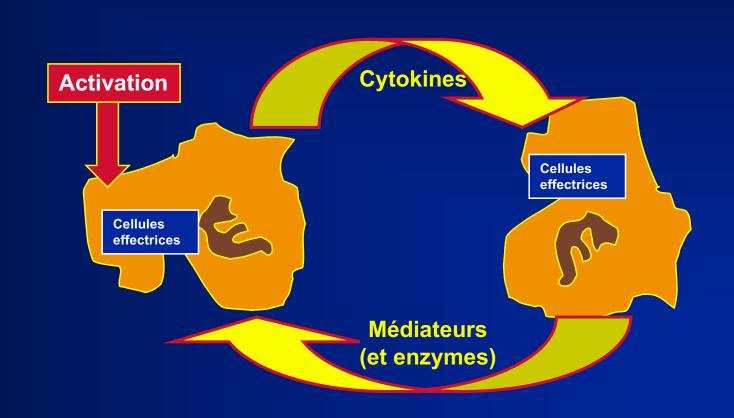

Rôle des médiateurs dans les réactions allergiques du type immédiat (Etudes critiques de l'efficacité clinique)

Antagonistes & inhibiteurs	Dermatite atopique	Urticaire, angioedème	Rhinite et conjonctivite	Asthme
Histamine	Oui (±/++)	Oui (+++)	Oui (++)	Non
LTs	Non	Non	Oui (±)	Oui (±)
PGs et TXs	Non	Non	Non	Non
PAF	Non	Non	Non	Non

Observations étayant le rôle des cytokines dans l'expression des réactions allergiques du type immédiat : la production/concentration des cytokines dans les liquides biologiques est corrélée avec la sévérité de la maladie allergique

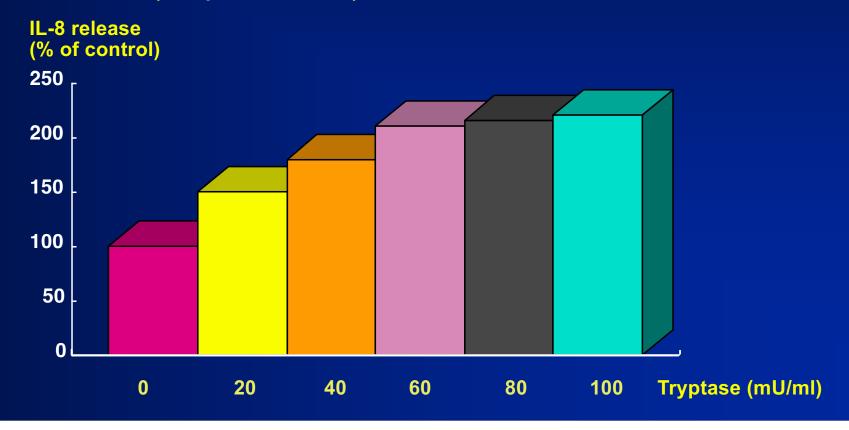


Observations étayant le rôle des cytokines dans l'expression des réactions allergiques du type immédiat : (Th2-type) cytokines are differentiation, growth, chemotactic and (pre)activating factors of effector cells in allergy

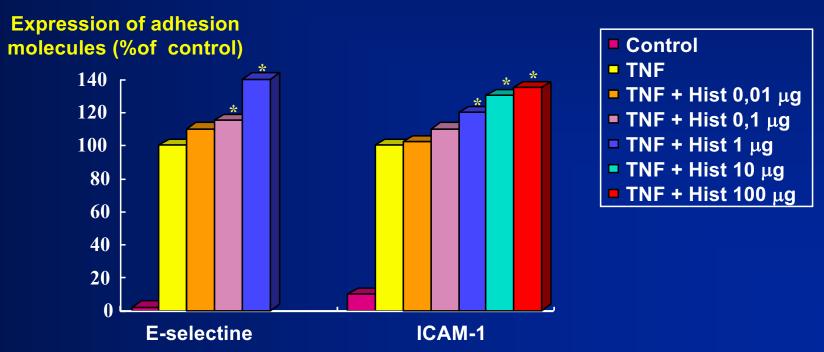


Les antagonistes/anticorps anti-cytokines n' inhibent que partiellement l'expression des réactions d' HSI

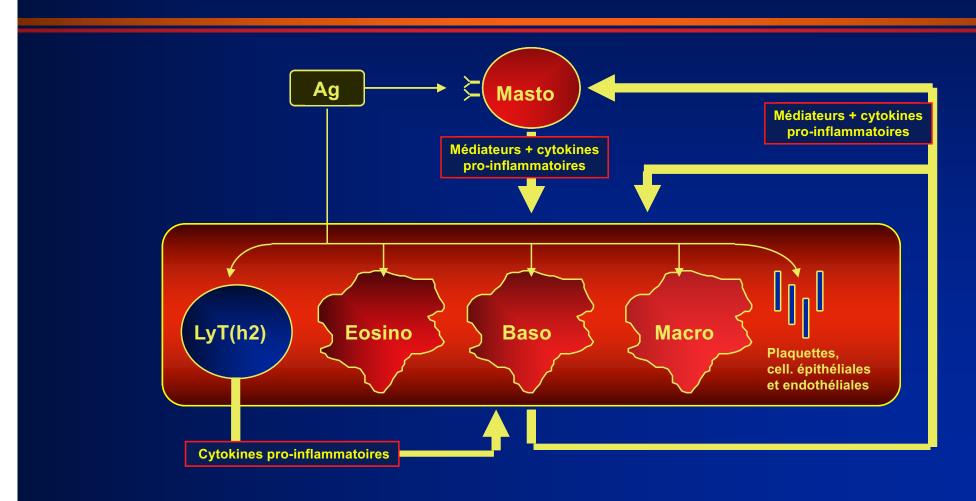
Exemple : les injections IP ou les aérosols du récepteur soluble pour l'IL-4 inhibent l'HRB induite par l'inhalation d'allergène chez la souris allergique (Renz et al, 1996)



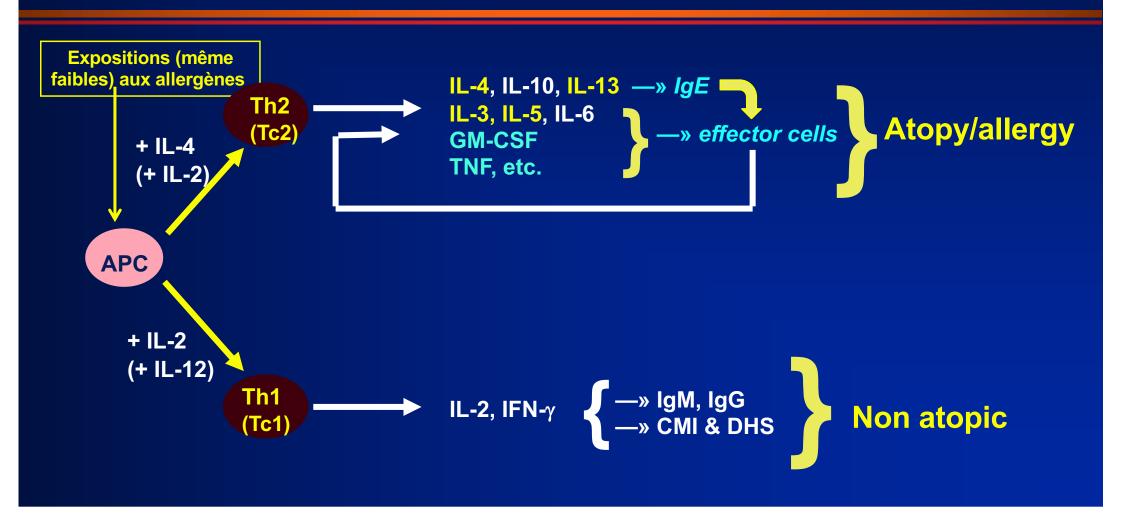
Physiopathologie de la réaction d' HSI: interactions entre cytokines et médiateurs


Les médiateurs de l'allergie induisent et/ou potentialisent la production des cytokines

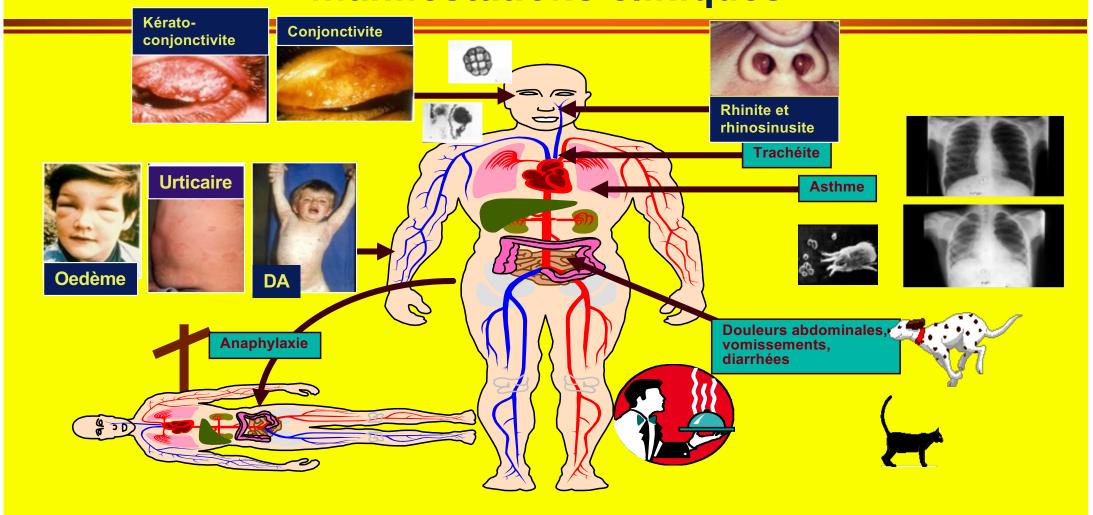
La tryptase mastocytaire stimule la production d'IL-8 chimiotactique par les cellules endothéliales (Compton et al, 1998)



Les médiateurs de l'allergie renforcent les effets proallergiques/pro-inflammatoires des cytokines

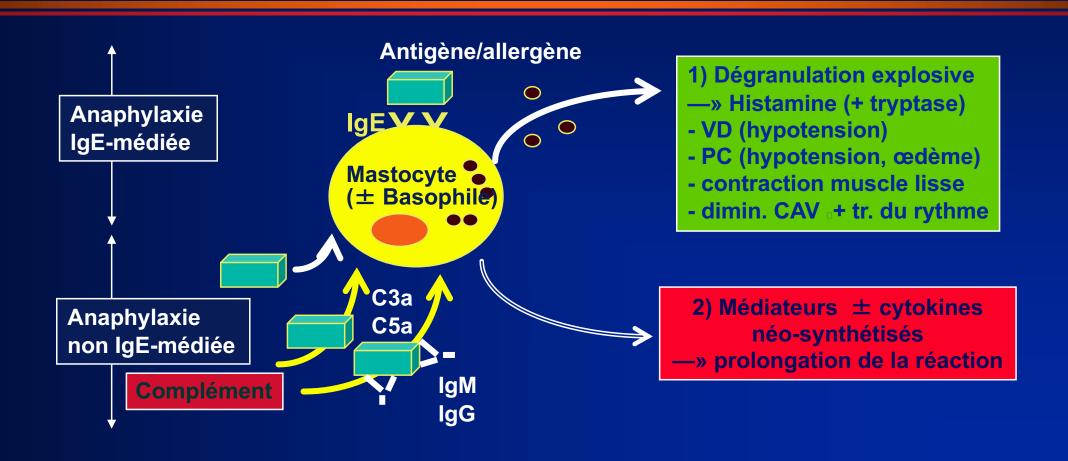

Par ses effets H1, l'histamine potentialise l'expression des molécules d'adhésion intercellulaire, induite par le TNF- α , sur les cellules endothéliales (Miki et al, 1996)

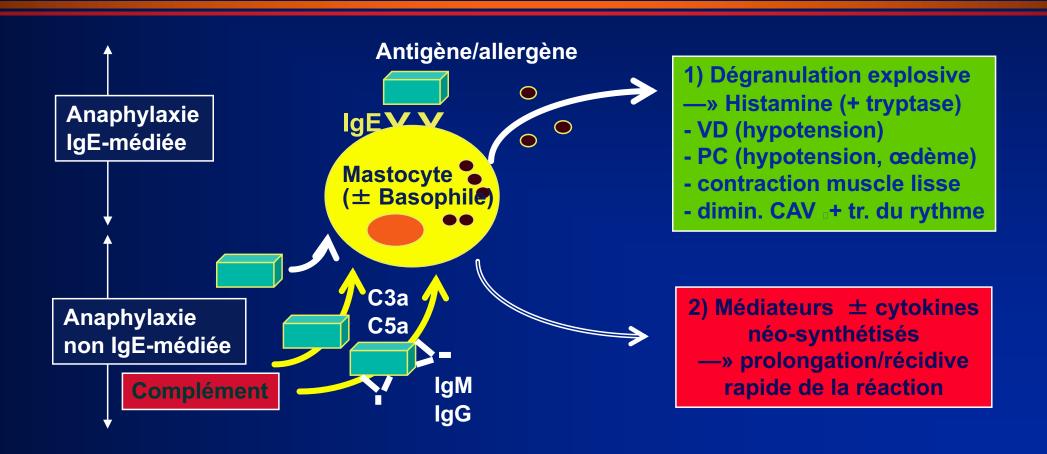
Conception actuelle de la phase tardive des réactions allergiques du type immédiat


Immune dysregulation in atopy, leading to increased IgE production and increased numbers and activability of effector cells

Introduction à l'allergie Allergie immédiate & atopie

- Allergie immédiate (HSI): ensemble de manifestations immuno-allergiques survenant chez des individus génétiquement prédisposés (atopie)
- Atopie : terrain génétique prédisposant à la survenue de manifestations allergiques du type immédiat, et caractérisé par :
 - une production exagérée d'IgE
 - une inflammation subaiguë/chronique des organes/tissus cibles
 - induites/entretenues/majorées par les stimulations exercées par les antigènes (.... « allergènes ») et les cofacteurs irritants/adjuvants non spécifiques environnementaux


Allergie immédiate : allergènes et manifestations cliniques


Allergie immédiate et anaphylaxie Caractéristiques immunologiques

Réaction	Terrain immunologique prédisposant	Sensibilisation antérieure (parfois occulte)	Mécanisme : dégranulation des mastocytes et basophiles	Manifestations cliniques
Allergique	Terrain atopique	Nécessaire	IgE-médiée	DA, urticaire, œdème Rhinite, conjonctivite Asthme Troubles digestifs
Anaphylactique - allergique/lgE - allergique/lgG Anaphylactique non allergique	Non/oui Non Non	Nécessaire Nécessaire Non	IgE-médiée IgM/IgG-mésiée Directe (indépendante des Ig)	Urticaire ± œdème ± rhinite/conjonctivite ± asthme ± troubles digestifs ± hypotension ± collapsus

Physiopathologie des réactions anaphylactiques: Schéma général

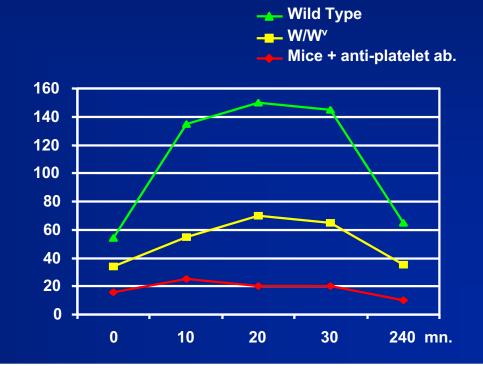
Physiopathologie des réactions anaphylactiques: Schéma général

Physiopathologie des réactions anaphylactiques

Activité biologique des médiateurs

Médiateurs	Effets sur							
	Vaisseaux	Muscle lisse	Epithelium	Leucocytes	Coeur			
Histamine	VD et PC ↑	Contraction	Mucus 🛧	Chimiotactisme et activation	Cond. AV ↓ Rythme ↑			
PAF	VD et PC ↑	Contraction		Chimiotactisme et activation	Arythmie			
PGF2α PGD2 TXA2	VD et PC ↑	Contraction Contraction Contraction		Chimiotactisme et activation				
LTB4 LTC4, D4, E4	VD et PC ↑	Contraction	Mucus ↑	Chimiotactisme et activation Activation (土)	Contraction ↓			

Physiopathologie des réactions anaphylactiques


Notions nouvelles : rôle des médiateurs non mastocytaires

PAF antagonist (BN 50739) prevents penicillin-induced Ig-dependent fatal anaphylaxis in +/+ and W/W^v mice (Choi et al, 1998)

Mice	Treatment with BN 50 739	Mortality (%)
+/+	no yes	6/6 (100 %) 0/6 (0 %)
W/W ^v	no yes	6/6 (100 %) 0/6 (0 %)

- ➢ Jönsson F et al. Mouse and human neutrophils, and PAF, induce anaphylaxis. J Clin Invest 2011; 121: 1484-1496.
- ➤ Wang M et al. Mouse anaphylactic shock is caused by PAF and histamine. Life Sci 2014; 116: 98-105.

Cara DC et al. Mast cell-independent mechanisms of immediate-type hypersensitivity: a role for platelets (Choi et al, 2004) - Vascular permeability changes in skeletal muscle of allergic mice after challenge (FITC albumin leakage: % ratio Ext/Int)

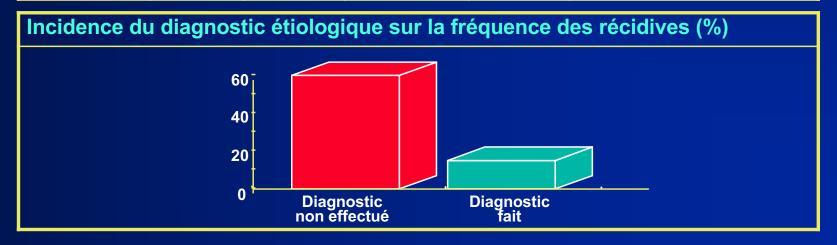
Physiopathologie des réactions anaphylactiques

Notions nouvelles : rôle des cytokines ?

Stone et al, 2009. Elevated serum cytokines during human anaphylaxis: identification of potential mediators of acute allergic reactions (dosage des cytokines, à l'arrivée aux urgences, chez les patients présentant des réactions anaphylactiques).

Cytokine (pg/ml)	Témoins	Réaction grave	р
IL-1	0	0	NS
IL-2	0	6.1	< 0.01
IL-3	7.0	7.9	NS
IL-4	0	6.6	< 0.01
IL-5	0	4.3	< 0.01
IL-6	0	49.3	< 0.01
IL-8	48	24.4	NS
IL-9	6.0	9.1	NS
IL-10	0	29.5	< 0.01
IL-13	0	6.0	< 0.01
IFN-γ	0	0	NS
TNF-α	0	4.8	< 0.01
GM-CSF	0	0	NS
Eotaxine	110	57.6	NS

Cytokine (pg/ml)	Réaction modérée	Réaction grave	р
IL-2	4	6.1	NS
IL-4	5.6	6.6	NS
IL-5	5	4.3	NS
IL-6	0	49.3	< 0.01
IL-10	10.6	29.5	< 0.01
IL-13	6.4	6.0	NS
IFN-γ	5.3	0	NS
TNF-α	6.5	4.8	NS

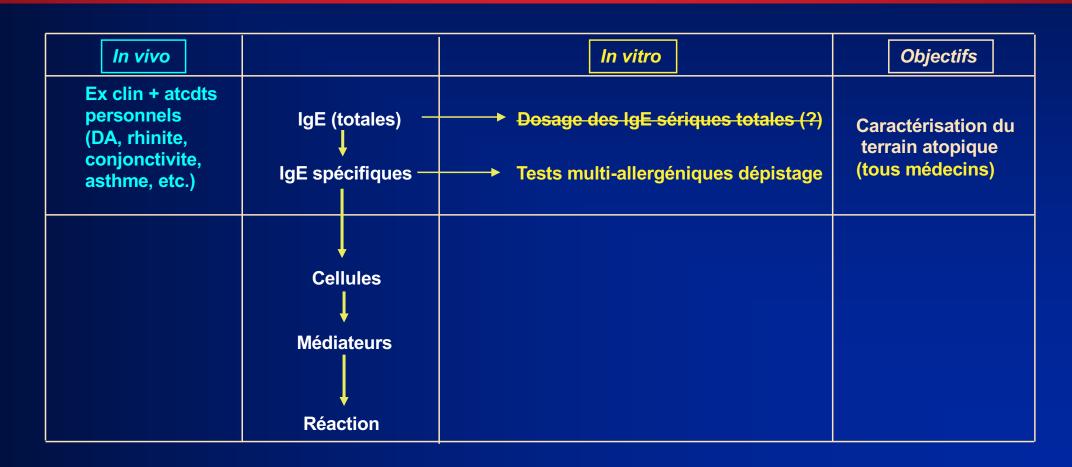

Wait and see !!!

Anaphylaxie: conclusions

(Influence de la rapidité du traitement et du diagnostic étiologique sur le pronostic des réactions anaphylactiques et anaphylactoïdes)

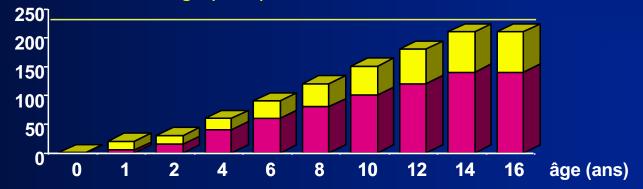
Rapidité du traitement : Sampson et al, 1992 (13 enfants ayant une allergie alimentaire connue, mais ayant présenté une réaction anaphylactique suite à la consommation accidentelle des aliments responsables

Evolution	%tage	Lie	eu de surven	Inj. d'adrénaline (mn	
		Ecole	Domicile Autre		après ingestion)
Fatale	46 %	66 %	16,5 %	16,5 %	95 (extr = 25-180)
Non fatale	54 %		100 %		37 (extr = 10-130)



Une petite pause !!!

Démarche diagnostique in vivo et in vitro de l'allergie immédiate (1)

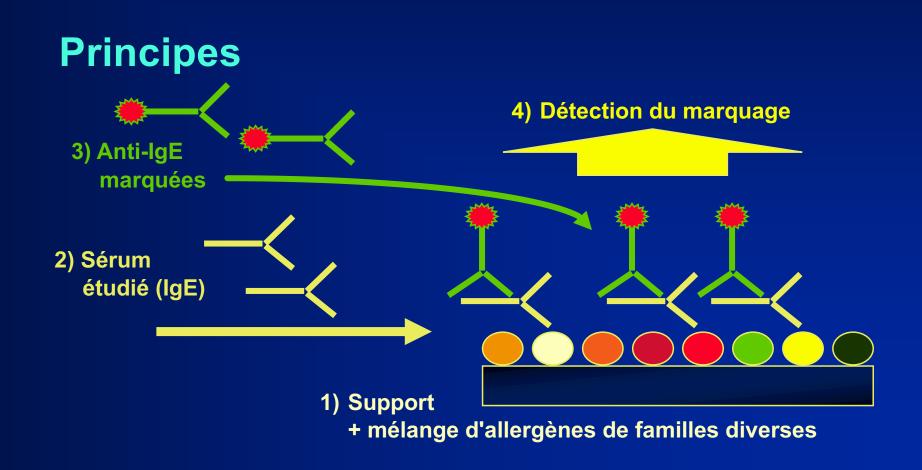


Diagnostic du terrain atopique (enfant, adolescent et adulte)

Dosage des IgE sériques totales (méthode sandwich)

- expression des résultats: Ul/ml ou KUl/l
- interprétation des résultats
 - » augmentation physiologique ≤ 10 à 20 Ul/ml par année (enfant)

Concentration des IgE (UI/mI)



- valeur diagnostique relative : hyper-lgE-globulinémie
 - » inconstante (mais fréquente dans DA et asthme)
 - » non pathognomonique (parasitoses, viroses, SIDA, etc...)

Martins et al. New childhood and adult reference intervals for total IgE in 1504 healthy subjects. JACI 2014; 133: 589-591

Age	Reference interval (IU/ml)
6-12 Mo	2-34
1-2 yr	2-97
3 yr	2-199
4-6 yr	2-307
7-8 yr	2-403
9-12 yr	2-696
13-15 yr	2-629
16-17 yr	2-537
≥ 18 yr	2-214

Tests in vitro : tests multi-allergéniques de dépistage (type Phadiatop)

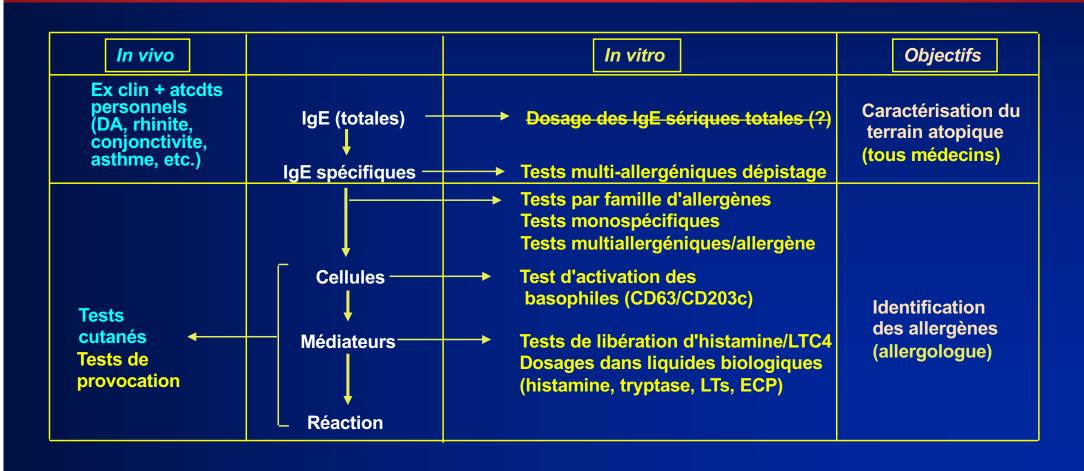
Diagnostic du terrain atopique

Tests multiallergéniques non quantitatifs : corrélations entre Phadiatop, IgE sériques totales et sIgE aéro-allergènes chez l'enfant, selon l'âge (Sigurs et al, 1990)

Enfants	RAST	nég	atifs	pos	sitifs
	âge	< 4 ans	> 4 ans	< 4 ans	> 4 ans
Phadiatop +	· (%)	0	0	58	91
lgE totales ≉ (%)		34	30	89	88

Dépistage des sensibilisations alimentaires prédominantes chez le jeune enfant (*ie*: RAST Fx5)

Diagnostic du terrain atopique Tests in vitro : tests multi-allergéniques de dépistage


1) Méfiance: tous les tests ne sont pas identiques selon les laboratoires

Tests et laboratoires	Composition					
Phadiatop (Phadia)	Mélange (théoriquement inconnu) d'aéroallergènes					
Vidas-Stallertest (Biomérieux)	D.Pter, blatte, chat, chien, dactyle, bouleau, olivier, armoise, pariétaire, alternaria (n = 10)					
Alatop (Siemens)	D.Pter, chat, chien, chiendent, phléole, bouleau, cèdre, ambroisie, plantain, pariétaire, penicillium, alternaria (n = 12)					

2) Interprétation

- » réponse (en principe) purement qualitative (≥ 0,35 KU/L)
- » valeur prédictive variable selon les tests et l'âge
- » faux-négatifs :
 - mono-sensibilisation/allergène absent du mélange
 - concentration et/ou affinité faible des IgE spécifiques (« mauvais producteurs »)
- » faux-positifs
 - concentration élevée d' lgE totales

Démarche diagnostique in vivo et in vitro de l'allergie immédiate

Identification des allergènes : interrogatoire

Interrogatoire

- circonstances et mode de début des symptômes
- caractère perennial ou saisonnier
- circonstances déclenchement/majoration
- etc....

éléments d'orientation souvent déterminants

Identification des allergènes

- interrogatoire (orientation +++)
 - TC à lecture immédiate (+++)
- autres tests (éventuellement)
 - tests in vitro (IgE sp, activation cellulaire)
 - tests in vivo (exclusion-réintroduction, provocation)
- allergologue seul

Principe des TC à lecture immédiate: pricks et IDR

Lecture à 15-20 mn : à interpréter en fonction des résultats des témoins négatif (dermographisme ?) et positif (hyporéactivité cutanée ?), et de l'HC.

Principe des TC à lecture immédiate: pricks et IDR

Dermographisme

Facteurs de variabilité :

- méthodologie des pricks
- allergènes testés (y compris, pour un même extrait, d'un laboratoire ou d'un lot à un autre)
- critères de positivité retenus (influençant la spécificité, la spécificité, la VPP et la VPN)
- site de réalisation des TC (cuir chevelu > dos
- > avant-bras)

Facteurs de variabilité :

- méthodologie des pricks
- allergènes testés (y compris, pour un même extrait, d'un laboratoire ou d'un lot à un autre)
- critères de positivité retenus (influençant la spécificité, la spécificité, la VPP et la VPN)
- site de réalisation des TC (cuir chevelu > dos > avant-bras)

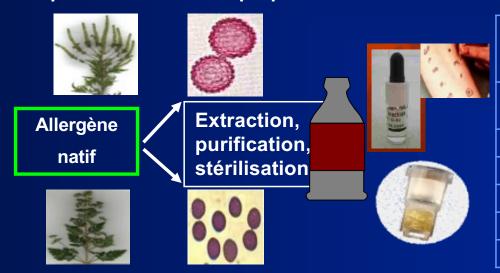
Prick-tests au phosphate de codéine effectués avec divers dispositifs et à plusieurs reprises chez 20 sujets témoins (Masse MS et al. Allergy 2011; 66: 1415-1419)

Méthode	Papule (mm) m (extrêmes)	Variation (%) intra-patient	Variation (%) inter-patients	Sensibilité (%)	Douleur (score)
Aiguille IV	5,4 (4,3-6,3)	16,2	21,3	100	1 (0-2)
Lancette ALK	4,3 (4-4,7)	14,6	13	96	1 (0,8-2,3)
Lancette Stallergènes	4,9 (4,2-5,7)	15	16,4	98	1 (1-3)
Stallerpointe (sans rot.)	1,4 (0,7-2,2)	97,1	79,9	20	2 (1-3)
Stallerpointe (avec rot.)	2,8 (2,6-3,5)	18,1	24,7	57	2,5)

Facteurs de variabilité :

- méthodologie des pricks
- allergènes testés (y compris, pour un même extrait, d'un laboratoire ou d'un lot à un autre)
- critères de positivité retenus (influençant la spécificité, la spécificité, la VPP et la VPN)
- site de réalisation des TC (cuir chevelu > dos > avant-bras)

Allergène	Papule	Sensibil.	Spécific.	VPP	VPN	Références
D Pter	≥ 3 mm	90,4 %	95,5 %	98 %	81 %	Pumrihun, As Pac J All Imm 2000
D Far	≥ 3 mm	80 %	82 %			Kanceljak-Macan, Allergy 2002
Chat	≥ 3 mm	69 %	100 %	74 %	95 %	Wood, JACI 1999


Facteurs de variabilité :

- méthodologie des pricks
- allergènes testés (y compris, pour un même extrait, d'un laboratoire ou d'un lot à un autre)
- critères de positivité retenus (influençant la spécificité, la spécificité, la VPP et la VPN)
- site de réalisation des TC (cuir chevelu > dos > avant-bras)

Allergène	Papule	Sensibil.	Spécific.	VPP	VPN	Références
D Pter	≥ 3 mm	90,4 %	95,5 %	98 %	81 %	Pumrihun, As Pac J All Imm 2000
D Pter	≥ 3 mm	95,2 %	51,7 %	59 %	94 %	Santoso, As Pac J All Imm 2000
Chat	≥ 3 mm	69 %	100 %	74 %	95 %	Wood, JACI 1999
Chat	≥ 3 mm	86 %	90 %	51 %	98 %	Adinoff, JACI 1990

Allergènes et tests diagnostiques de l'allergie immédiate

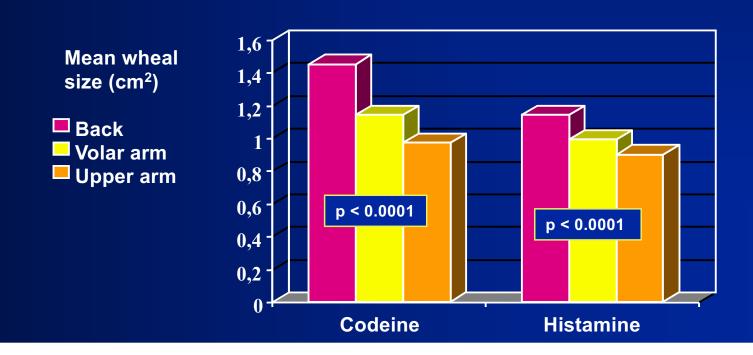
- 1) Facteurs de variabilité de la valeur diagnostique des tests d'HSI:
 - > composition quantitative et qualitative de l'extrait allergénique : origine du produit et mode de préparation de l'extrait allergénique

Compositions respectives d'extraits de pollen de bouleau provenant de divers laboratoires

Labo n°	Protéines (µg/ml)	Bet v 1 (µg/ml)	Bet v 4 (µg/ml)
1	192	20	10
2	314	12	4
3	69	7.5	11
4	23	1.6	7
5	298	19	6

Matière première

Préparation allergénique


Allergènes et tests diagnostiques de l'allergie immédiate

1) Facteurs de variabilité de la valeur diagnostique des tests d'HSI : composition quantitative et qualitative de l'extrait allergénique (Brunetto et al, Allergy 2010; 65: 184-190)

Analysis of D.p	Analysis of D.pter extract composition			Pricks : mean wheal area (mm²)/histamine				
Manufacturer	Protein	Derp 1	Group 2	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5
	(μg/ml)	(μg/ml)	(μg/ml)					
1	259 ± 4	36 ± 6	32 ± 8	x 2	x 4	x 3	x 1	x 2,2
2	$253 \pm 3,4$	9,6 ± 2	8,5 ± 1	x 1	x 5	x 4,5	x 0,1	x 2,1
3	64 ± 4	n.a	6 ± 0,01	x 1,2	x 5,2	x 2,5	x 0,5	x 1
4	$180 \pm 0,5$	11 ± 1,5	$1,3 \pm 0,1$	x 0,5	x 2	x 1,5	x 0,05	x 0,25
5	$361 \pm 6,4$	22 ± 1,6	23,4 ± 1	x 0,65	x 3	x 1,8	x 2,1	x 1,8
6	100 ± 9	20 ± 3	0,7 ± 1	x 0,4	x 2	x 0,5	x 1	x 0,8
7	28 ± 6	13 ± 2	$2,4 \pm 0,7$	x 0,7	x 0,7	x 0,0	x 0,7	x 0,45
8	155 ± 6	16 ± 2	$2,6 \pm 0,3$	x 0,8	x 4,8	x 1,2	x 1,4	x 1,5

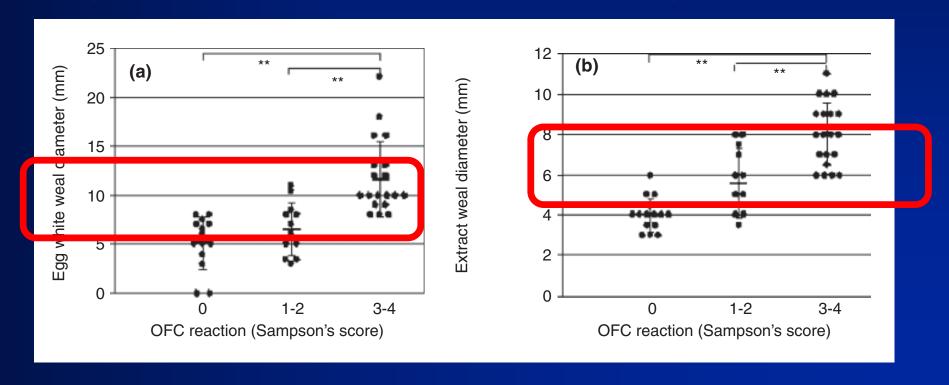
Facteurs de variabilité :

- méthodologie des pricks
- allergènes testés (y compris, pour un même extrait, d'un laboratoire ou d'un lot à un autre)
- critères de positivité retenus (influençant la spécificité, la spécificité, la VPP et la VPN)
- site de réalisation des TC : dos > avant-bras > bras (Scherer et al. Clin Exp Allergy 2007)

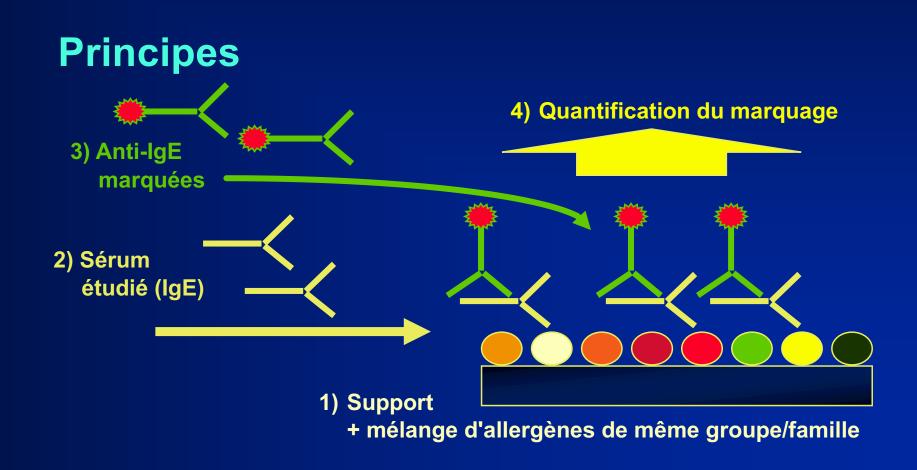
Valeur prédictive des TC à lecture immédiate (aliments)

Variabilité selon les allergènes						
Nationalité Age Allergène Cut-off VPP (%) Références (mm)						
Australienne	≤ 2	lait	6	100	Hill et al, 2004	
		oeuf	5	100	Sporik et al, 2000	
		arachide	4	100		

Variabilité selon l'âge						
Nationalité	Age (ans)	Allergène	Cut-off (mm)	VPP (%)	Références	
Australienne	≤ 16	lait	8	100	Hill et al, 2004	
		oeuf	7	100	Sporik et al, 2000	
		arachide	8	100		
Australienne	≤ 2	lait	6	100	Hill et al, 2004	
		oeuf	5	100	Sporik et al, 2000	
		arachide	4	100		


Valeur prédictive des TC à lecture immédiate (aliments)

Variabilité selon l'origine ethnique						
Nationalité Age Allergène Cut-off VPP (%) Références (mm)						
Australienne	≤ 16	oeuf	7	100	Hill et al, 2004	
		arachide	8	100	Sporik et al, 2000	
Française	≤ 16	arachide	16	100	Rancé et al, 2002	


Variabilité selon les pathologies						
Nationalité	Age (ans)	Allergène	Cut-off (mm)	VPP (%)	Références	
Australienne	≤ 16	lait	8	100	Hill et al, 2004	
(urticaires et anaphylaxies)		oeuf	7	100	Sporik et al, 2000	
aliapilylaxies)		arachide	8	100		
Française (DA +++)	≤ 16	arachide	16	100	Rancé et al, 2002	
Allemande	≤ 16	lait	17,3	99	Verstege et al, 2006	
(DA +++)		oeuf	17,8	99		

Valeur prédictive des TC à lecture immédiate (gravité des réactions/aliments)

Tripodi S et al. Predicting the outcome of oral food challenge with hen's egg through skin tests and end-point titration. Clin Exp Allergy 2009; 39: 1225-1233.

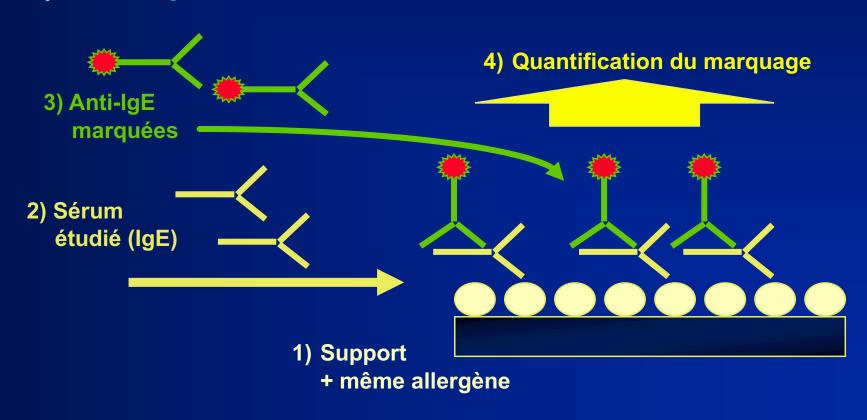
Tests in vitro : tests d'orientation par groupes d'allergènes

Diagnostic étiologique

Dosage des IgE sériques : tests d'orientation par groupes d'allergènes

1) Méfiance: les « mêmes » mélanges ne sont pas identiques selon les laboratoires

Quelques principaux mélanges de trophallergènes				
Fruits coque (fx1 Phadia, fp1 Siemens)	amande, arachide, noisette, noix Brésil, noix coco			
Aliments mer (fx2 Phadia, fp2 Semens)	crevette, morue, moule, thon, saumon			
Graines (fx3 Phadia, fp3 Siemens)	avoine, blé, maïs, sarrazin, sésame			
Viandes (fx73 Phadia) bœuf, porc, poulet				
Viandes (fp73 Siemens)	bœuf, mouton, porc, poulet			


2) Méfiance: la sensibilité des tests varie suivant les familles/groupes d'allergènes

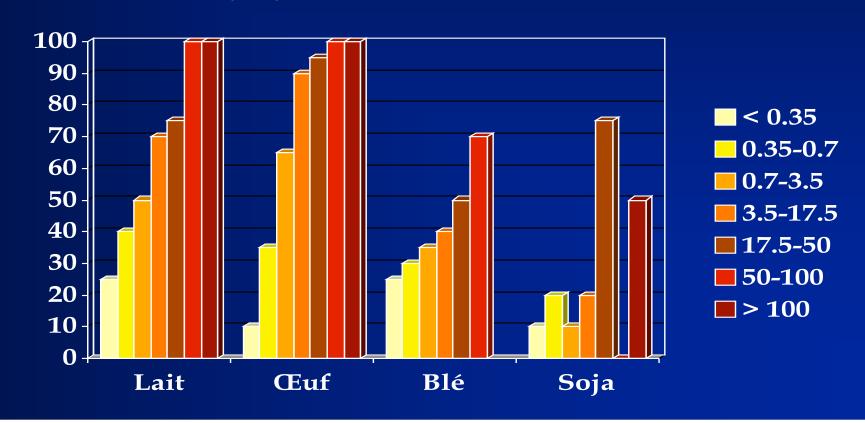
Tests d'orientation par groupe d'allergènes : sensibilité des tests par groupes d'allergènes/TC concordants avec l'histoire clinique ± RAST ± TPO chez les enfants atteints d'allergie alimentaire (auteurs divers)

Tests par groupes d'allergènes	Sensibilité (%)
Fx5 (aliments de l' enfant)	80 - 90
Fx10 (viandes)	80 - 90
Fx9 (fruits exotiques)	50 - 60
Fx7 (légumes)	40 - 50

Tests in vitro: tests unitaires

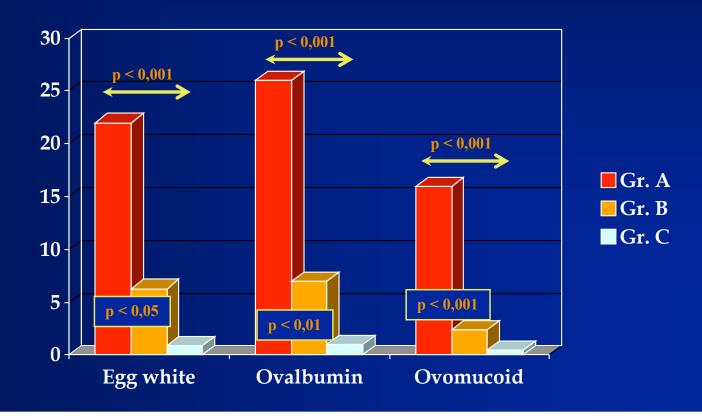
1) Principes

Identification des allergènes : tests unitaires (Valeur diagnostique des CAP-RAST aux aliments)

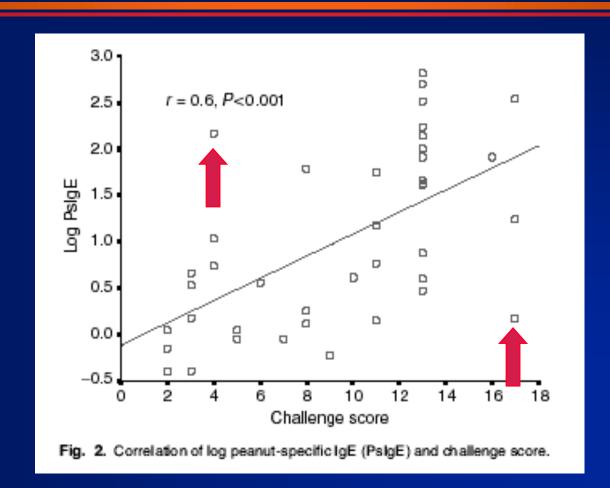

Nationalité	Age (ans)	Allergène	Cut-off (KU/I)	VPP (%)	Références
US	≤ 14	lait	32	95	Sampson et al, 1998
		oeuf	6	95	
		arachide	15	95	
US	≤ 14	lait	15	100	Sampson et al, 2001
		oeuf	7	100	
		arachide	14	100	
Allemande	< 16	oeuf	13—59	95—99	Celik-Bilgili et al, 2005
Allemande	≤1	oeuf	11—89	95—99	Celik-Bilgili et al, 2005
Espagnole	≤1	lait	5	95	Garcia-Ara et al, 2001
Espagnole	≤ 2	oeuf	0,35	88	Boyano-Martinez et al, 2001
Française	≤ 16	arachide	57	100	Rancé et al, 2002
Coréenne	4—14	sarrasin	0,35	100	Sohn et al, 2003

Variations selon:

- allergènes
- âges
- origines ethniques
- pathologies
- études (Sampson et al, 1998/2001)

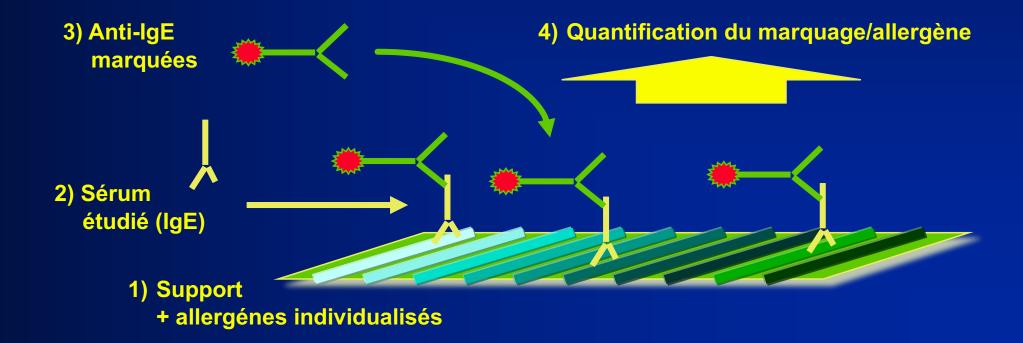

Celik-Bilgili et al. The predicitve value of specific immunoglobulin IgE levels in serum for the outcome of oral food challenges. Clin Exp Allergy 2005; 35: 268-273.

Taux de réaction (%) aux TPO alimentaires en fonction des concentrations des IgE sériques spécifiques (KU/I) chez 501 enfants.



Ando H et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol 2008; 122: 583-588)

Results of egg-specific IgE determinations (KUA/I) in children allergic to heated and raw egg (gr. A), raw egg only (Gr. B), and in egg-tolerant children (Gr. C).



Hourihane JOB et al. Does severity of low-dose, double-blind, placebocontrolled food challenges reflect severity of allergic reactions to peanut in the community? Clin Exp Allergy 2005; 35: 1227-1233.

Tests in vitro : tests multiallergéniques à réponse quantitative par allergène

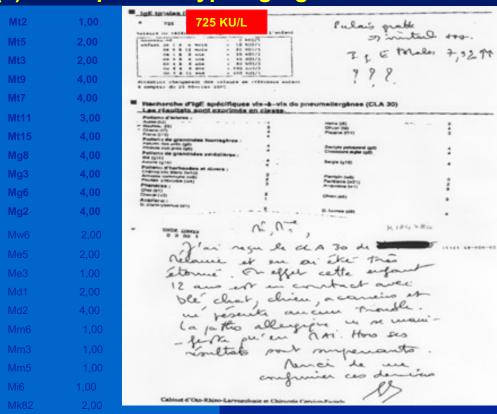
Principe

Diagnostic étiologique
Dosage des IgE sériques : tests multi-allergéniques à réponse quantitative par allergène (type CLA)

	CLA-30 Pneumaller	genes	CLA-30 Mixte	S	CLA-30 Trophall	ergène
1	POLLENS D'ARBRES		ALIMENTS		NOX - FRUITS EXOTIQUE	25 -
	1 Auine	12	1 Colori	ms	SOLANACES LEGUMINEL	ISES -
A	2 Hetre	15	2 Soja	114	OMBELUFÉRES	
//	3 Bouleau	13	1 Arachido	u3	1 Amando	120
// A	4 Olivier	10	4 Pois	m2	2 Notsette	f17
/// A	5 Chone	17	5 Avous	10.6	3 Avocat	196
V//A	6 Platano	t11	6 Porc	126	4 Barrane	192
V//A	7 Frans	t15	7 Bld	14	5 Agrumes/306, f3.3	3, f208
V//2		137733	8 Crevette 9 Morue	124	6 Tomate	125
V//A	POLLENS DE GRAMINÉES		10 Laft	13	7 Pomme de terro	135
W///A	ii Phlécie	96	11 Blanc d'couf	n	8 Pots	F12
V//A	9 Paturin	98	11 Blank G OHD	**	9 Arachide	f13
W///A	10 Dactyle	gs	POLLENS D'ARBRES		10 Soja	f14
V///A	11 Chiendent	g2 g15	12 Bouleau	t3	11 Colori	186
V//A	12 Bi6	g15	11 Ollyler	19		
V///A	13 Avoine	g14	14 Chông	1.7	VIANDES	
0//2	14 Seigle	g12	15 Platano	t1 1	12 Bosuf	127
VIIA					1.3 Poulet	fB3
VIII)	POLLENS D'HERBACÉES		POLLENS DE GRAMINÉES		14 Porc	126
V///A	15 Plantain	wo.	16 Dactyle	g15	***************************************	
W//A	16 Chénopode	W10	17 Bio *		PRODUITS DE LA MER	
V///	17 Pariétaire	w21	18. Philode	96	15 Palourde	F207
11/1/2	18 Ambrotsle	w1			16 Crevette	124
WI/A	19 Fasaso Ambroisio	W/4	POLLENS D'HERRACÉES		17 Crabo	f23
W///	20 Armoise	W6	19 Plantain	ws	18 Morue	13
V///			20 Ambrotsia	wt	19 Then	140
1///	PHANERES D'ANIMAUX	200	21 Parkitaire	w21	COMPUNE	
V//A	21 Chat	01	22 Armotse	WE	CONDIMENTS	
V///	22 Chien	46	PHANERES D'ANIMAUX		IIA OS	147
1///	23 Choval	63	23 Chat	61	21 Olgnon	140
V//	MOISISS IRES		24 Chieri	45	PERSONAL PROPERTY.	
		mil	24 Cinat		FERMENT	***
1	24 Aspergilks		MOISISSURES		22 Levure	145
	25 Alternaria	m6	25 Aspergitius	m3	FARINES	
War All	26 Candida	m6	26 Alternaria	m6	23 Sésame	f10
180	LATEX		The second secon		23 Sesame 24 Fiz	10
(EA)		162	LATEX		25 Mass	m
	27 Letter TVLTTV	RESE	27 Later Call	M82	25 FM 6	14
4/	INSECTES		Discourage Contract C		Sto Can	100
	28 Blattes	16	INSECTES	124	PRODUITS LAITIERS - ŒU	re
	To charter		28 Blattes	16	27 Lat	12
	ACARIENS		ACADIDIC		28 Castine	178
	29 D. pteronyssinus	d1	ACARIENS	-	29 Jaune d'eauf	175
	30 D. farthas	d2	29 D, pteronyssinus 30 D, farinee	d1 d2	30 Blant d'œuf	n
	Se D, lettical	44	30 D, faringe	0.2	SU EMINE G COUR	**

Diagnostic étiologique Dosage des IgE sériques : tests multi-allergéniques à réponse quantitative par allergène (type CLA)

Méfiance (1): sensibilité et spécificité variables selon les allergènes

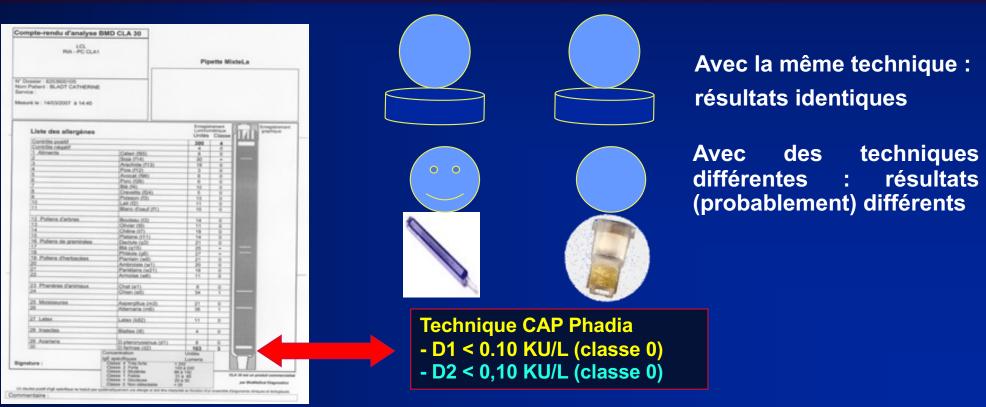

Tests multiallergéniques à réponse quantitative par allergène : corrélations entre MAST-CLA et TC ± RAST dans les allergies de l'enfant (Warner et al, 1990)							
Allergènes (TC ± RAST positifs) Sensibilité (%) Spécificité (%)							
Dermatophagoides pteronyssynus 86 88							
Chat	76	76					
Pollens d'arbres	64	91					
Pollens de graminées	56	95					
Moisissures	20-40	86-96					
Lait de vache	55	82					
Œuf de poule	53	93					

Limites des tests multi-allergéniques à réponse quantitative par allergène (type CLA)

Méfiance (2): mauvaise reproductibilité

(3): faux-positifs/hyper-lgE-globulinémie

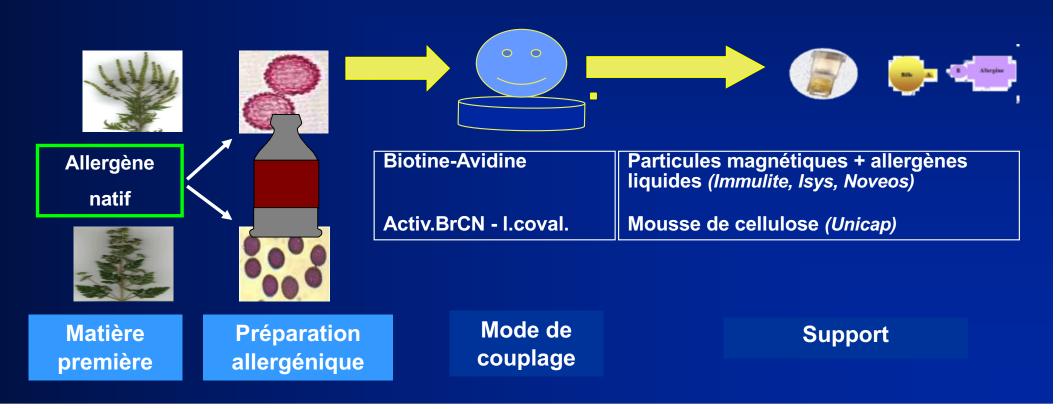
D'après C. Hamberger (Biomnis Lab, France)


Diagnostic étiologique
Dosage des IgE sériques : tests multi-allergéniques à réponse quantitative par allergène (type CLA)

Tests multiallergéniques à réponse quantitative par allergène : conclusions

- valeur diagnostique
 - assez bonne pour la plupart des aéroallergènes
 - très contestable pour les trophallergènes
- problèmes d'interprétation liés à :
 - une concentration élevée d'IgE
 - sériques totales
 - spécifiques d'un allergène
 - une allergénicité croisée entre pollens et aliments
 - une faible reproductibilité

Facteurs de variabilité de la valeur diagnostique selon les tests (in vitro)

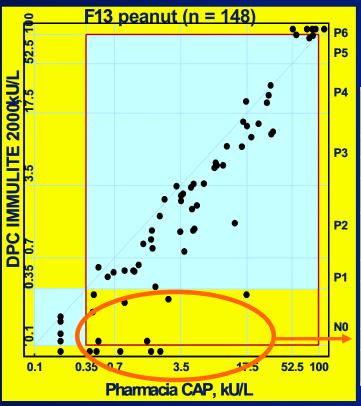

Résultats attendus des dosages d'IgE sériques spécifiques

D'après C. Hamberger (Biomnis Lab, France)

Facteurs de variabilité de la valeur diagnostique selon les tests (in vitro)

- > origine de la source allergénique
- méthode de préparation de l'extrait allergénique
 technique de couplage de l'extrait allergénique et nature du support

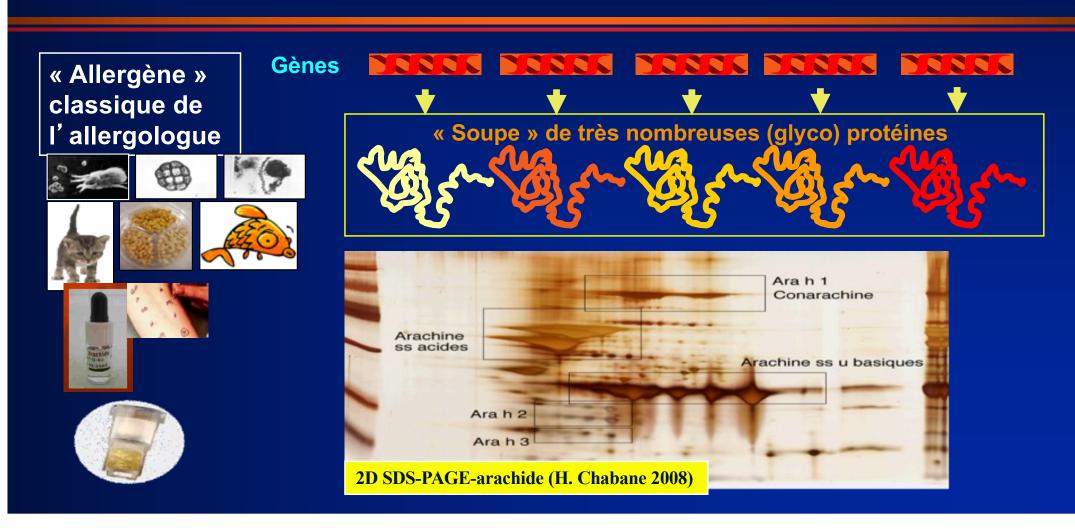
Allergènes et tests diagnostiques de l'allergie immédiate

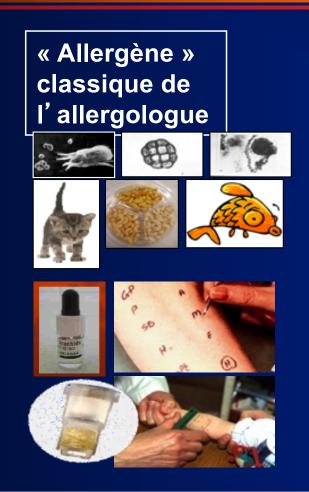

Problèmes liés aux IgE anti-CCD (cross-reactive carbohydrate determinants):

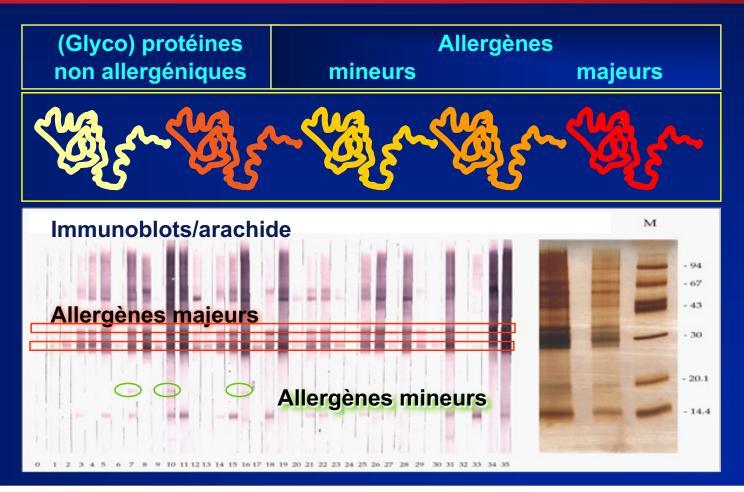
- > CCDs = sucres couplés aux protéines (glycoprotéines) et/ou libres abondants dans
 - —» la majorité des substances d'origine végétale (pollens, aliments, latex)
 - —» les vénins d'hyménoptères
- ▶ IgE anti-CCDs détectées in vitro (RAST-Con.A ou broméline) chez
 - —» 50-70 % des sujets sensibilisés aux pollens et 20-30 % des allergiques aux pollens
 - —» 16-50 % des patients allergiques aux fruits et légumes
 - —» 56-79 % des patients allergiques aux venins d'hyménoptères
- ▶ IgE anti-CCDs
 - —» rarement détectées in vivo (TC) car non/peu activatrices in vitro des basophiles/mastocytes
 - —» sans pertinence clinique dans la majorité des cas
- > IgE anti-CCDs responsables de nombreux résultats faussement positifs in vitro

Allergènes et tests diagnostiques de l'allergie immédiate

system leading to false positive results


3) Problèmes liés aux CCDs (cross-reactive carbohydrates determinants) : variabilité selon la méthode de dosage des IgE (exemple : CAP/DPC-Immunlite arachide)


ID nb	CAP F13	DPC F13	CAP bromelain	Inhibition of F13 by bromelain	Conclusion CAP F13	ST peanut	Clinical history
1	17,3	0,31	6,9	yes	false +	neg	pollinosis
2	2,58	0,29	< 0,35	no	true + ??	ND	AD
3	2,12	< 0,1	< 0,35	yes	false +	neg	FA to pea, OC peanut negative
4	1,69	< 0,1	< 0,35	yes	false +	±	FA to egg & fish, peanut unknown
5	1,54	0,11	0,82	yes	false +	ND	unknown
6	0,89	0,26	< 0,35	no	true +	ND	severe AD, peanut unknown
7	0,8	< 0,1	< 0,35	no	true + ?	?	pollinosis
Conc	lusion	: most C	AP +/DPC - d	iscrepancies	result from rea	ctions wit	h CCD in the CAP


From: C. Hamberger (Biomnis Lab, France)

Allergènes moléculaires (Immunogénétique des allergènes)


Immunogénétique des allergènes

Immunogénétique des allergènes

« Allergène » classique de l'allergologue

(Glyco) protéines non allergéniques

mineurs

Allergènes

majeurs



Avantages:

- » degré de purification et de standardisation très élevé
- » fabrication relativement aisée en grande quantité par génie génétique
- » dépourvus de glucides (problèmes CCD/sensibilisations aux aéro-allergènes et trophallergènes végétaux)

Limites:

- » méthodologiques : préparation, support et fixation sur support, etc.
- » une seule isoforme/un seul variant

Allergènes (majeurs) purifiés ou recombinants

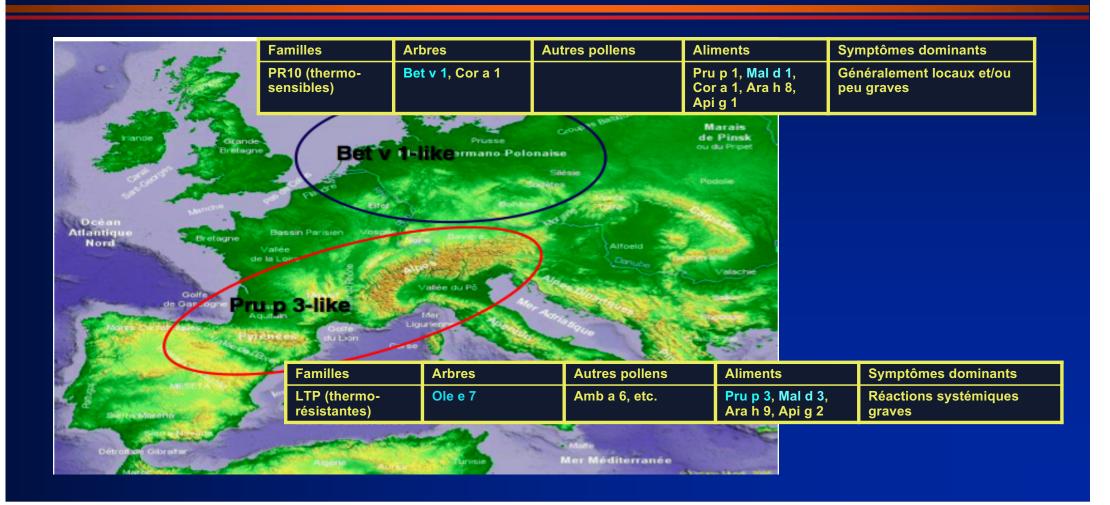
Classification des principaux allergènes moléculaires végétaux par familles biochimiques

Familles	Arbres	Autres pollens	Aliments	Symptômes dominants
PR10 (thermosen- sibles)	Bet v 1, Cor a 1		Pru p 1, Mal d 1, Cor a 1, Ara h 8, Gly m 4, Api g 1	Généralement locaux et/ou peu graves
Profilines	Bet v 2, Cor a 2 Ole e 2	Amb a 8, Gpe 12,	Pru p 4, Mal d 4, Cor a 2, Ara h 5, Api g 4	Généralement peu graves
Polcalcines	Bet v 4, Ole e 3	Amb a 9, Gpe 7		Généralement peu graves
Albumines			Cor a 14, Ara h 2	Généralement graves
Globulines			Ara h1, Ara h 3	Généralement graves
LTP (thermo- résistantes)		Amb a 6, Ole e 7, etc.	Pru p 3, Mal d 3, Ara h 9, Api g 2	Réactions systémiques graves

Homologies (plus ou moins) importantes entre molécules de même famille

- —» sensibilisations croisées non pathogènes
- —» sensibilisations croisées pathogènes (allergies croisées)

Classification des principaux allergènes moléculaires animaux par familles biochimiques


Familles	Phanères	Acariens	Insectes	Aliments	Symptômes dominants
Tropomyosine		Der p et f 10	Bla g 7	Met a 1, Pen a 1, Hel as 1	Variables
Profilines		Der p et f 18			Variables
Cystine-protéases		Der p et f 1			Variables
Groupe 2		Der p et f 2			Variables
Albumines	Fel d 2, Can f 3			Bos d 6 (BSA)	Variables
Lipocalines	Can f 1 et 2				Variables

Met a 1 et Pen a 1 = crevette Hel as 1 = escargot

Homologies (plus ou moins) importantes entre molécules de même famille

- —» sensibilisations croisées non pathogènes
- —» sensibilisations croisées pathogènes (allergies croisées)

Allergie à la pomme selon l'origine géographique

Intérêt des allergènes (majeurs) moléculaires 1) Amélioration des extraits utilisés pour le diagnostic

Sicherer SH et al. The Phadia hazelnut ImmunoCAP (f17) supplemented with rCor a 1 : increased sensitivity in hazelnut-allergic patients, JACI 2008; 122 : 413-4.

- ➤ Patients: 55 enfants allergiques à la noisette (HC évocatrice ou TP positif)
- Méthodes : ImmunoCAP noisette / noisette + rCor a 1

≻Résultats : III	ImmunoCAP	Taux moyen lgE sp.	Sensibilité
	Noisette	8,6 KU/I	85 %
	Noisette + rCor a 1	22,2 KU/I	100 %

➤ Observations (inconvénients): The Phadia hazelnut ImmunoCAP (f17) supplemented with rCor a 1: increased sensitivity in hazelnut-allergic patients, ... but decreased specificity in birch-allergic patients without clinical evidence of hazelnut allergy, due to cross-reactivity between Cor a 1 and Bet v 1.

Intérêt des allergènes (majeurs) recombinants 2) Diagnostic des sensibilisations pathogènes vs non pathogènes

- Kanny G et al, JACI 2008 (abst).
 - **>Sujets:**
 - >94 patients allergiques à l'arachide (TPO positif)
 - >40 atopiques allergiques aux pollens de graminées et de bouleau, mais tolérant l'arachide
 - >50 témoins non atopiques
 - Dosages des IgE sériques spécifiques (CAP Phadia): arachide (F13), rAra h 1, r Ara h 2, r Ara h 3, r Ara h 8

 Results 1 : diagnostic value of RASTs (% positive in peanut-allergic patients, pollen-allergic patients, and non atopic control subjects) 					
IgE > 0,10 KU/I	Controls	Pollen- allergic	Peanut allergic		
Peanut (F13)	2 %	57 %	100 %		
Ara h 1	0 %	5 %	79 %		
Ara h 2	0 %	2.5 %	99 %		
Ara h 3	0 %	7.5 %	66 %		
Ara h 8	0 %	80 %	47 %		
—» high sensitivity and specificity of Ara h 2 > Ara h 1 >> Ara					

Results 2: reactogenic dose in oral challenge (mg)

Monosensitized to Ara h 2

Cosensitized to Ara h 2 + Ara h 1

Cosensitized to Ara h 2 + Ara h 1 + Ara h 3

2000
1800
1400
1200
1000
800
600
400
200

Cosensitized to Ara h 2 + Ara h 1 + Ara h 3

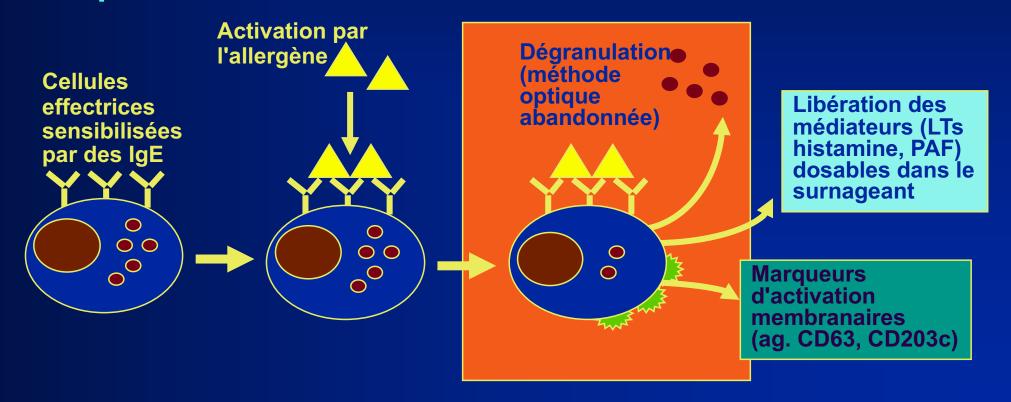
—» high predictive value of lower severity of peanut allergy in patients monosensitized to Ara h 2

Caractéristiques générales des tests ISAC et ALEX

- ➤ tests fondés sur le principe du diagnostic résolu par analyse des composants (molécules) allergéniques d'une source naturelle (component resolved diagnosis)
- microplaques de multiples aéroallergènes et trophallergènes moléculaires purifiés ou recombinants
- Choisis en tant qu'allergènes majeurs ou panallergènes dont l'intérêt par leurs corrélations cliniques a fait l'objet de travaux antérieurs.

Tests multiplex de dosage des slgE: limites et indications

1) Limites


- Détection impossible des quantités faibles de slgE (< 1 kU/L)</p>
- Quantité faible d'allergène/puits (quelques picrogrammes)
 - —» détection impossible des concentrations élevées de slgE (effet plateau)
 - —» suivi impossible de l'évolution des sIgE dans le temps (spontanée, après éviction allergénique ou ITA)
- Compétition avec les slgG
- > Reproductibilité modérée
- > Certains allergènes probablement inutiles (ie: Jug r 2/vicilline de la noix)
- Certains allergènes manquants (ie: poissons eau de mer/eau douce; thon, espadon et maquereau/cailllaud, saumon et autres poissons; poissons plats/autres poissons, etc...)
- ➤ Absence de corrélation entre concentrations ISU (ISAC) et kU/L (Immunocap)
- > Difficultés d'interprétation pour les non spécialistes
- Coût élevé et non remboursement

2) Principales indications

- > Etude des profils de sensibilisation (études épidémiologiques notamment)
- > Exploration des patients présentant des sensibilisations/allergies multiples/complexes
- > Exploration des anaphylaxies idiopathiques

Tests in vitro: tests d'activation cellulaire

Principes

Diagnostic étiologique Tests d'activation cellulaire

» Cellular activation tests (HRT, CAST and BAT)

- available (theoritically) for all (soluble) allergens but
- methodological problems (trained and equipped laboratories)
- blood consuming (several ml/allergen)
- need to be performed extemporaneously
- expensive and not refunded by medical insurances
- highly variable diagnostic value/substances, tests and laboratories
- Negativation rate > negativation of dkin tests

Tests d'activation cellulaire : corrélations entre test de la libération d'histamine et RAST dans l'allergie respiratoire (Nolte et al, 1990)

Allergènes (concordance HC + TC)	RA Sensibil (%)		THR Sensibil (%) Spécif (%)	
Acarlens	66	73	100	91
Pollens	100	78	100	78
Moisissures	67	60	67	80
Phanères animales	55	100	91	64

Conclusions : concordance (presque) parfaite entre test de l'HR et RAST

Diagnosis of IHS to drugs and biological substances (2c) In vitro tests

- » Serum-specific IgE determination (RASTs)
- Cellular activation tests (HRT, CAST and BAT)
- » Comments: limited indications
 - skin tests not feasible/uninterpretable/not validated
 - patients with convincing clinical history and negative responses in ST

Gamboa PM et al. Basophil activation and sulfidoleukotriene production in patients with immediate allergy to betalactam antibiotics and negative skin tests. J Invest Allergol Clin Immunol 2004; 14: 278-83.

- * Subjects:
 - > Patients: 23 penicillin-allergic patients with *negative ST* and positive OC.
 - > Controls : 30 subjects with negative ST and OC.
- Methods: specific lgE determination, CAST and flowcytometry BAT.
- Results:

Tests	lgE	CAST	BAT	lgE + CAST + BAT
Sensitivity	21,7 %	22,7 %	39,1 %	60,9 %
Specificity	86,7 %	83,3 %	93,3 %	88 %

- Comments:
 - good specificity (88 %)
 - good sensitivity —» sparing 2/3 of potentially harmful OC

Valeur diagnostique des tests in vitro d' HSI

Type de tests	Sensibilité	Spécificité
	(vrais positifs)	(vrais négatifs)
Tests par familles d'allergènes	30-90 %	≥ 90 %
Tests unitaires	≥ 90 %	≥ 90 %
Tests multiallergéniques à réponse quantitative par allergène	30-90 %	50-90 %
Tests d'activation cellulaire	≤ 60 %	50-90 %

(**) JO du 28/11/03: « les tests multiallergéniques à réponse quantitative par allergène permettent d'identifier les IgE spécifiques et ne doivent en aucun cas être utilisés comme tests de dépistage ».

Tests in vivo: tests de provocation

- Principe : introduction de l'allergène suspect dans l'organisme (éventuellement après éviction)
- Voies d'introduction & applications principales
 - » per os (aliments, médicaments, additifs)
 - » oculaire (conjonctivites)
 - » nasale (rhinites, asthmes sévères)
 - » bronchique (asthmes modérés)
 - » épicutanée (dermites de contact)
- Limites
 - » sévérité de la maladie allergique
 - » caractère anaphylactogène de certains allergènes

Traitement de l'allergie immédiate

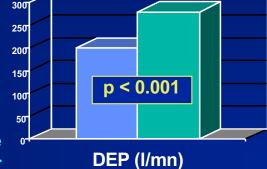
Mesures non spécifiques

- » mesures d'hygiène (tabagisme/asthme, antiseptie et émollients de la peau/DA, etc.)
- » médicaments anti-allergiques (antihistaminiques, cromoglycate), anti-inflammatoires (antileucotriènes, corticoïdes), immunomodulateurs (ac. anticytokines et anti-récepteurs des cytokines) et immunosuppresseurs (ciclosporine, méthotrexate, inhibiteurs de la calcineurine, etc.)

Mesures spécifiques

- » éviction des allergènes (si possible)
- » Immunothérapie allergénique (DS)

Maladies allergiques: influence des mesures thérapeutiques non spécifiques


1) Renzetti G et al. Less air pollution leads to rapid reduction of airway inflammation and improved airway function in asthmatic children. Pediatrics 2009; 123: 1051-1058

Patients: 37 enfants atteints d'asthme allergique persistant vivant en région fortement polluée et emmenés pendant 7 jours dans une région non polluée

>Résultats: ■ J0 ■ J7

2) de Oliveira Costa Jordao et al. ERICA: smoking is associated with more severe asthma in Brazilian children. J Pediatr

2019: in press.

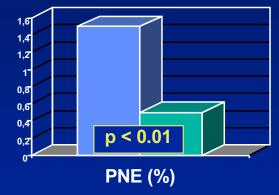
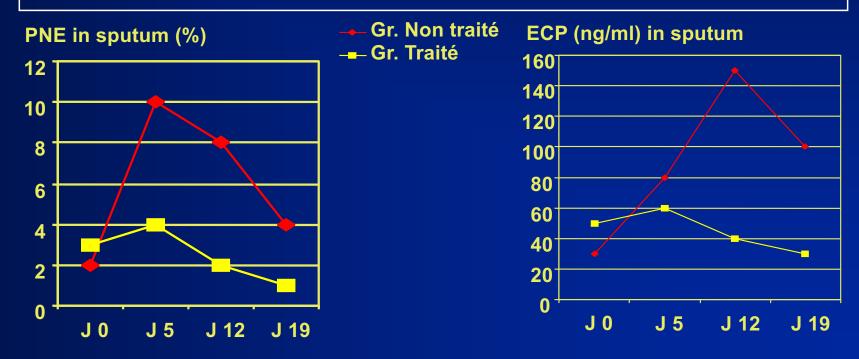


Table 2 Crude and adjusted analysis between current asthma/severe asthma and smoking variables. ERICA, Brazil, 2013–2014.

Variables	Current	asthma	Sever	e asthma
	Crude PR 95% CI	Adjusted PR 95% CI	Crude PR 95% CI	Adjusted PR 95% CI
Not exposed	1.00	1.00	1.00	1.00
Experimentation	1.78 (1.51-2.09) ^a	1.81 (1.57-2.08) ^a	2.01 (1.35-2.98) ^b	2.12 (1.49-300) ^a
Current smoking	2.08 (1.65-2.64) ^a	2.14 (1.66-2.75) ^a	2.29 (1.38-3.82) ^b	2.45 (1.38-3.82) ^a
Regular smoking	2.25 (1.64-3.07) ^a	2.33 (1.69-3.20) ^a	2.41 (1.23-4.73) ^c	2.49 (1.29-4.80) ^b
Passive smoking	1.47 (1.27-1.67) ^a	1.50 (1.29-1.76) ^a	1.66 (1.19-2.32) ^b	1.73 (1.24-2.41) ^b

Maladies allergiques: influence des mesures thérapeutiques non spécifiques

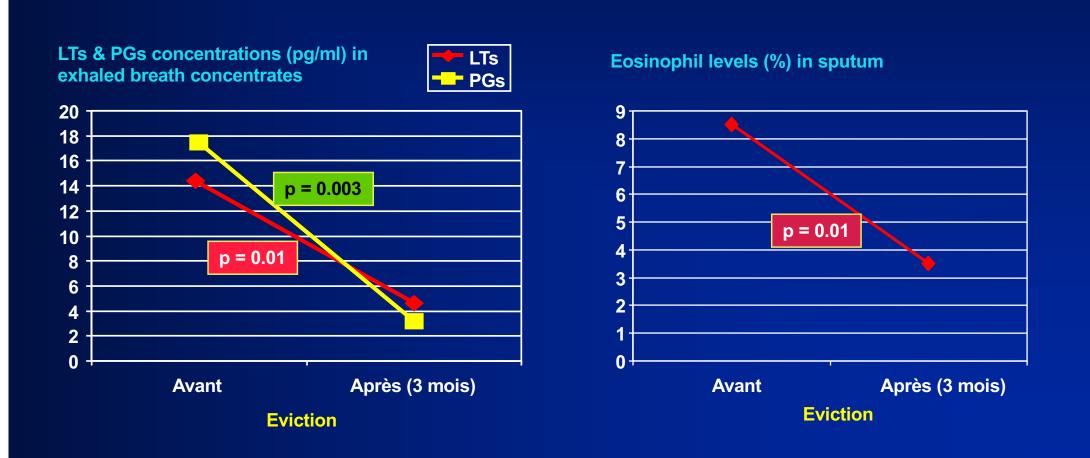

3) Pauwels RA et al. Early intervention with budesonide in mild persistent asthma: a randomized, double-blind trial. Lancet 2003; 361: 1071-1076.

Groupe et conséquences	Placebo	Budésonide	p ≤
Traitements d'appoint	45 %	31 %	0,0001
Asthme aigu sévère	5,58 %	3,25 %	0,0001

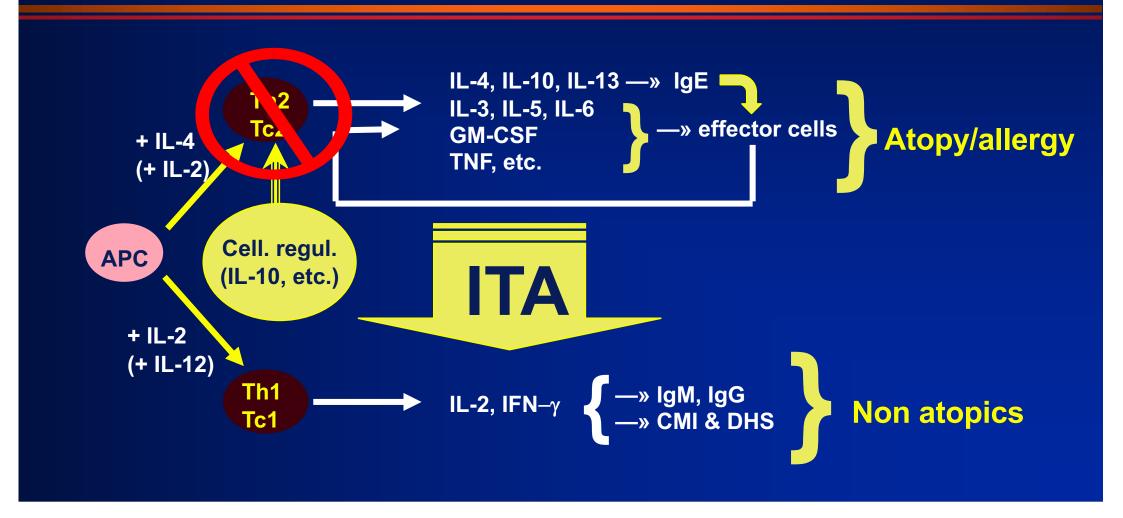
Etude randomisée en DACP sur 7241 patients suivis pendant 3 ans

Physiopathologie de la réaction allergique du type immédiat (inflammation subaiguë/chronique des organes et tissus-cibles)

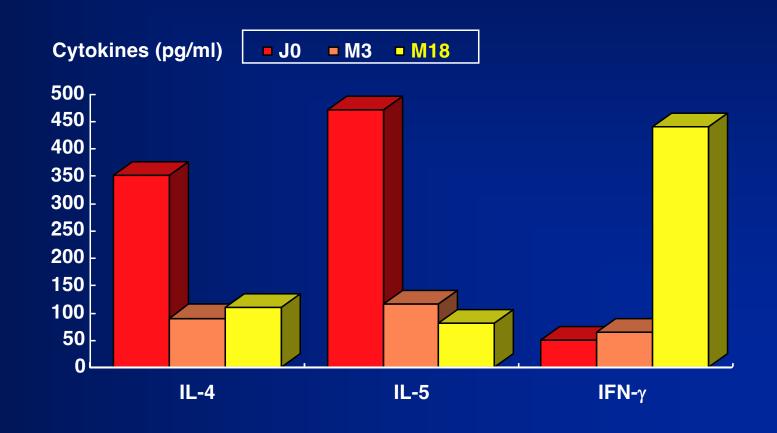
De Kluijver et al. Asymptomatic worsening of airway inflammation during low dose allergen exposure in asthma: protection by inhaled steroids. AJRCCM 2002; 166: 294-300

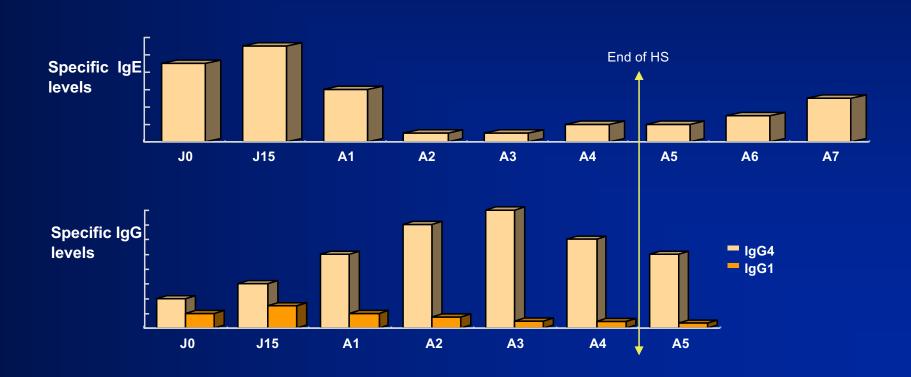


PNE and ECP levels in sputum during and after a 10-days course of VLDA inhalation

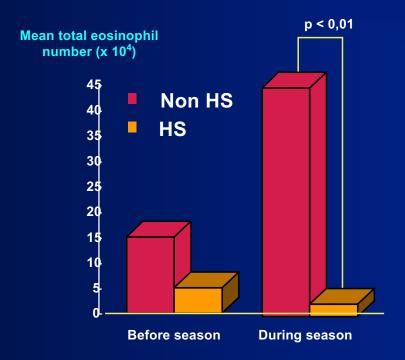

Contrôle des maladies allergiques (Mesures d'éviction des allergènes)

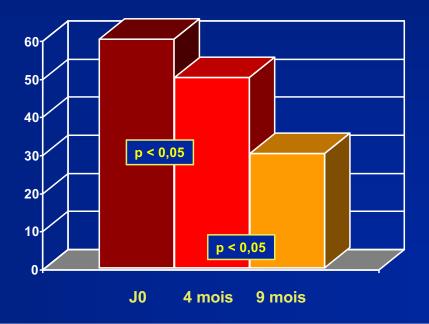
Effets de l'éviction drastique des allergènes (acariens) dans la DA et l'asthme						
Pathologie	Paramètres	Eviction allergénique Références				
		avant/sans après/avec				
DA	Score clinique	$29,2 \pm 6,0$	$6,6 \pm 4,6$	Denmann (1990)		
DA	Score médicament.	28 ± 15,6	9,5 ± 10,8	Denmann (1990)		
DA	PNE sg/mm ³	525 ± 450 276 ± 250 Sanda (1992)				
Asthme	PD20 métacholine	300 mcg	500 mcg	Shapiro (1999)		


Maladies allergiques: influence des mesures d'éviction spécifiques (Bodini A et al. Exhaled breath condensate eicosanoids and sputum eosinophils in asthmatic allergic children: influence of natural avoidance of HDM. Pediatr Allergy Immunol 2004; 15: 26-41.)


Immunothérapie allergénique (1): mécanismes

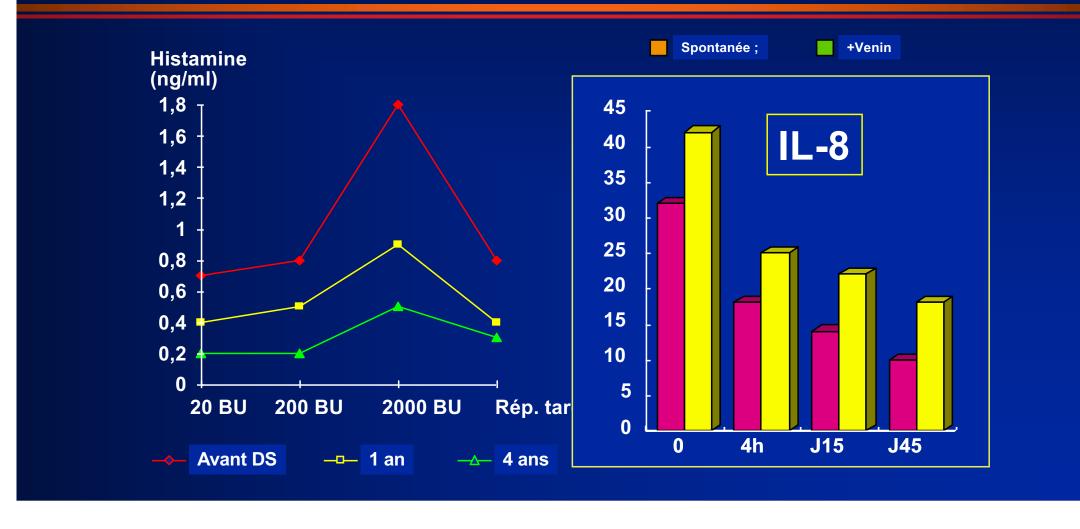
House dust mite SC immunotherapy results in decrease of Th2 cytokine and in increase of Th1 cytokine secretion in specific allergen-stimulated T cell cultures from allergic asthmatic patients (ODA et al, 1998 : Cell. Immunol, 190, 43-50)


Mechanisms of hyposensitization: alterations of specific IgE and IgG production


Reduction in numbers and activability of inflammatory cells

The effect of immunotherapy on eosinophil accumulation in BALF of subjects with asthma during natural pollen exposure (Rak et al : JACI 1991; 88: 878 - 888)

Shim J.Y. et al. Allergen-specific SC conventional immunotherapy decreases IgE-mediated basophil histamine releasability. Clin Exp Allergy 2003; 33: 52-57.



• Basophil histamine release (%) induced by D. Far.

Courbes dose-réponse des médiateurs dans le LLN des malades désensibilisés pour rhinite pollinique, après TPN spécifique (Dokic et al, 1996 : Allergy, 51, 796 - 803)

Modifications of chemokine production by blood mononuclear cells during ultrarush venom immunotherapy (Akoum et al, 1998)

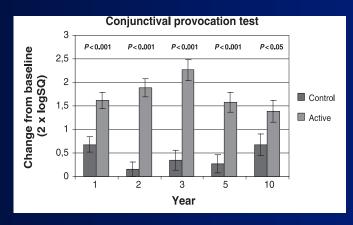
Immunothérapie allergénique (2): conséquences

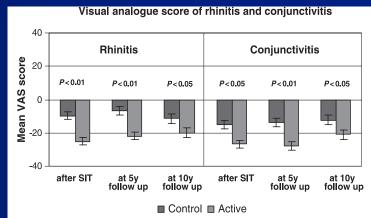
1) Effets curatifs

- —» réduction (durable) de la réactivité aux allergènes (TP) et de l'hyperréactivité non spécifique aux irritants
- —» diminution (durable) du score symptomatique et de la consommation médicamenteuse

2) Effets préventifs

- —» réduction du risque d'aggravation (évolution des rhinites et rhino-conjonctivites vers un asthme)
- —» réduction du risque de développement de néosensibilisation chez les patients mono/pauci-sensibilisés


Efficacité curative et préventive à long terme de l'ITA (injectable)


- ❖ Eng PA et al. Twelve-year follow-up after discontinuation of preseasonal grass pollen immunotherapy in childhood. Allergy 2006; 61: 198-201.
 - Etude prospective en ouvert
 - > Patients: 23 enfants (rhinite ± conjonctivite/monosensibilisation aux pollens de graminées)
 - > Randomisation en 2 groupes
 - —» Gr. 1 (n = 13): DS pré-saisonnière SC x 3 ans
 - --- Gr. 2 (n = 10): traitement symptomatique seul
 - Suivi à la 12e année suivant la fin de la DS
 - --- » Scores cliniques et médicamenteux
 - --- Prick-tests aux aéro-allergènes courants
 - --- Prévalence de l'asthme saisonnier

Patients	Score symptomatique	Score médicamenteux	Asthme saisonnier	Néo- sensibiliisations
Gr. 1 (DS)	15	36.5	32 %	60 %
Gr. 2 (non DS)	62	73	70 %	100 %
р	< 0.05	< 0.03	≈ 0.0 5	< 0.05

Efficacité curative et préventive à long terme de l'ITA injectable (Jacobsen .J et al. Specific immunotherapy has long-term preventive effect on seasonal and perennial asthma: 10 years follow-up on the PAT study. Allergy 2007; 62: 943-8.

- > Etude prospective multicentrique en ouvert
- > Patients: 205 enfants (rhinite ± conjonctivite/monosensibilisation aux pollens de graminées ou de bouleau)
- > Randomisation en 2 groupes
 - —» Gr. 1 (n = 103): DS injectable x 3 ans
 - —» Gr. 2 (n = 102): traitement symptomatique seul
- > Suivis à la 2e (n = 95 vs 88) et 7e années (n = 79 vs 68) suivant la fin de la DS

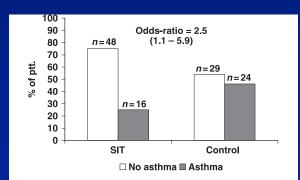


Figure 3. The percentage of children with and without asthma 7 years after termination (10-year follow-up) of specific immunotherapy. Based on the patients without asthma before treatment (n = 117). The absolute number of children is shown above the bars.

Néosensibilisations à la 10e année de l'étude:

- -DS = 17%
- Témoins non DS = 30%

Désensibilisation : conséquences

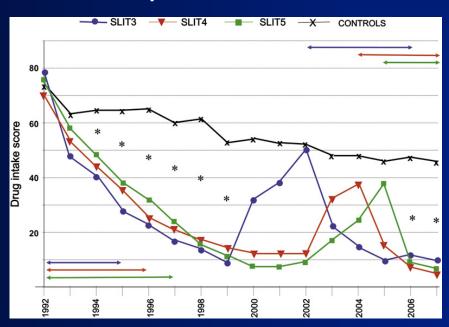
Effets curatifs —» nuls/négligeables lorsque la DS est effectuée avec des mélanges complexes d'allergènes

Adkinson et al. A controlled trial of SC immunotherapy for asthma in allergic children. N Engl J Med 1997; 336: 324-331.

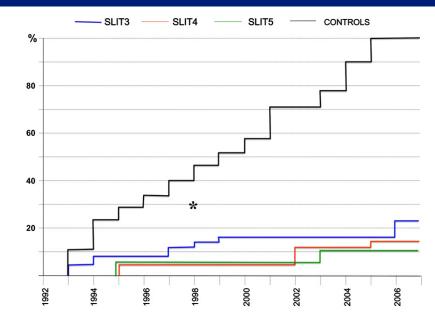
- > étude en DACP de 121 enfants atteints d'asthme allergique lié à des polysensibilisations
- > traitement pendant 18 mois par
 - placebo (n = 60)
 - mélange de 2 à 7 allergènes (acariens \pm mosisssures \pm pollens) (n = 61)
- > suivi régulier (scores symptomatique et médicamenteux, HRB/métacholine, TC, ac. spécifiques)

Changes in outcome measures from baseline to the last follow-up visit			
Outcome measures	SIT group	Placebo group	p (placebo/SIT)
Medication score	- 1.4 ± 1.9 (p < 0.001)	- 1.2 ± 2.0 (p < 0.001)	0.37 (NS)
Symptom score	$-0.08 \pm 0.34 (p = 0.02)$	$-0.16 \pm 0.39 (p = 0.003)$	0.50 (NS)
Remission of asthma (complete or partial)	31 %	28 %	0.51 (NS)
Metacholine sensitivity	$0.41 \pm 1.87 (p = 0.008)$	$0.39 \pm 1,51 \text{ (p = 0.003)}$	> 0.99 (NS)
Emergency visit	$-0.05 \pm 0.38 (p > 0.53 : NS)$	$-0.02 \pm 0.37 (p > 0.99 : NS)$	0.73 (NS)
Hospitalization	$-0.11 \pm 0.64 (p = 0.50 : NS)$	$-0.10 \pm 0.77 (p = 0.63 : NS)$	0.43 (NS)
DEP	+ 2.5 ± 11.1 (p = 0.24 : NS)	- 1.4 ± 11.1 (p = 0.11 : NS)	0.05

DS par voie sublinguale: mécanismes (1)



- 1) Captation rapide (≤ 10-20 minutes) de 75-85 % de l'allergène par les cellules dendritiques de la muqueuse buccale
- 2) Migration des cellules dendritiques vers les ganglions lymphatiques loco-régionaux
- 3) Persistance dans les ganglions pendant environ 48 heures, et présentation de l'allergène aux lymphocytes T
- 4) Génération de lymphocytes Treg. (producteurs d'IL-10 et de TGF- β) diffusant dans l'organisme par voie sanguine


Marogna M et. Long-lasting effects of sublingual immunotherapy according to its duration: A 15-year prospective study. J Allergy Clin Immunol 2010;126:969-75.

Etude prospective chez 78 patients monosensibilisés aux acariens

- —» Gr. 1: 57 patients désensibilisés par voie sublinguale durant 3, 4 ou 5 ans —» 12 à 15e année
- —» Gr. 2: 21 patients témoins sous traitement médicamenteux seul —» 12 à la 15e année

Scores symptômes-médicaments/année (+ besoins de reprise de la SLIT)

FIG 4. Percentage of patients with at least 1 new skin sensitization in the SLIT3 (blue line), SLIT4 (red line), SLIT5 (green line), and control (black line) groups. The asterisk indicates the significant difference versus the control group.

Allergie immédiate : conclusions (1)

- Allergie immédiate = affection associant de façon plus ou moins complète des manifestations cutanées (DA, urticaires et angio-œdèmes), oculaires (conjonctivites), respiratoires (rhinites, trachéites, asthme), digestives (diarrhée, vomissements), et parfois cardio-vasculaires (anaphylaxie), survenant chez des individus génétiquement prédisposés (atopie), et liée à :
 - >une production exagérée d'IgE (totales et spécifiques) en réponse aux stimulations exercées par les allergènes
 - ➤une inflammation subaiguë/chronique des organes et des tissus-cibles, entretenue/exacerbée par les expositions aux allergènes et aux irritants non spécifiques

Allergie immédiate : conclusions (2)

- Diagnostic du terrain atopique (tous médecins)
 - Anamnèse (antécédents évocateurs) et examen clinique (signes cliniques évocateurs)
 - Examens biologiques (tests multi-allergéniques de dépistage) si anamnèse et examen clinique non concluants
- Diagnostic étiologique (allergologue seul en principe)
 - Concordance entre données de l'anamnèse et résultats des TC à lecture immédiate
 - ➤ Examens biologiques (dosages des IgE sériques spécifiques) ± tests de provocation si TC non praticables ou non concluants

Allergie immédiate : conclusions (3)

- ❖Traitement : association ± complète de
 - éviction des allergènes et des facteurs favorisants et déclenchants non allergéniques (lorsque possible)
 - ➢lutte contre l'inflammation allergique (anti-H₁, anti-LTs, corticoïdes, anticorps anti-IgE et anti-cytokines, immunosuppresseurs)
 - ≻désensibilisation

Merci pour votre attention

DA? urticaire?? rhinoconjonctivite??? toux spasmodique???? asthme?????

Acariens ou blatte ? pollens?? phanères animales ??? moisissures ???? arachide ????? lait ?????? œuf ???????

.... et quelques cas cliniques interactifs s'il nous reste un peu de temps !!!

Jules P.: garçon de 7 ans, consultant en Octobre pour rhino-conjonctivite et asthme saisonniers

Interrogatoire

- > HDM : épisodes de rhino-conjonctivite + asthme, depuis l'âge de 5 ans
 - périodicité = 3 par mois
 - caractère saisonnier = Mai à mi-Août ; RAS le reste de l'année
 - antihistaminiques et bronchodilatateurs = efficacité modérée

> antécédents personnels :

- IgE du sang de cordon = 2,5 UI/mI
- DA du nourrisson, malgré allaitement au sein prolongé et diversification alimentaire retardée et progressive
- quelques poussées intermittentes persistantes de DA depuis

> antécédents familiaux :

- mère: DA + asthme pendant l'enfance
- père : rhino-conjonctivite pollinique sévère
- 1 frère de 12 ans : RAS
- 1 soeur de 17 ans : DA persistante, depuis l'âge de 4 mois
- * Examen clinique : RAS, à l'exception d'une discrète lichénification des plis

Jules P.: garçon de 7 ans, consultant en Octobre pour rhinoconjonctivite et asthme saisonnier

- Interrogatoire: antécédents personnels :
 - ▶ IgE du sang de cordon = 2,5 UI/mI
 - > DA du nourrisson, malgré allaitement au sein prolongé et diversification alimentaire retardée et progressive + quelques poussées intermittentes de DA depuis

* Examen clinique: RAS, à l'exception d'une lichénification des plis

Jules P.: garçon de 7 ans, consultant en Octobre pour rhinoconjonctivite et asthme saisonnier

- Bilan (1: recherche d'un terrain atopique ?)
 - > NFS = ND
 - > IgE sériques totales = ND NON: atopie évidente
 - > Phadiatop = ND
- Bilan (2: bilan respiratoire) OUI: car asthme
 - > RX des sinus maxillaires = normale
 - > RX de thorax face (insp. + exp.) = normales
 - ➤ EFR:
 - fonctions normales à l'état basal
 - TPB n.sp. à la métacholine : seuil de réactivité = 550 mg

Jules P. : garçon de 7 ans, consultant en Octobre pour rhinoconjonctivite et asthme saisonnier

❖ Bilan (3 : bilan allergologique ?) —» TC à lecture immédiate (pricks) ± slgE

Réactifs	Prick-tests	slgE (PRU/ml)
Témoin positif	5/15	
Témoin négatif	0	
D Pter + D Far	0	
Blatte	0	
Chat et chien	0	
Arbres de parc	0	
12 graminées	8/25	
Dactyle	6/20	12 (classe 3)
Moisissures 1	0	
Alternaria	0	< 0,35
Cladosporium	0	< 0,35
Plantain	0	0,45 (classe 1)

Utilité diagnostique des slgE ?

NON: concordance HC/TC

Jules P.: garçon de 7 ans, consultant en Octobre pour rhinoconjonctivite et asthme saisonnier

- Diagnostic ? RC + asthme allergiques aux pollens de graminées
- Traitement ?
 - > mise en route d'une DS aux pollens de graminées
 - traitement d'appoint par antihistaminiques, corticoïdes locaux et bronchodilatateurs pour la prochaine saison pollinique
- Suivi et évolution ?
 - > 1 an plus tard : saison pollinique précédente bonne
 - > 2,5 ans plus tard :
 - saison pollinique précédente bonne (besoins réduits en médicaments)
 - diminution de la réactivité cutanée et des RAST pollens de graminées
 - > 5 ans plus tard:
 - saisons polliniques précédentes bonnes (aucun besoin de médicaments)
 - diminution de la réactivité cutanée aux pollens de graminées
 - négativation des RAST- pollens de graminées
 - EFR de base normale, TPB n.sp. métacholine normal
 - arrêt de la DS

Bernard W.: enfant de 1,5 mois, hospitalisé en urgence pour réaction anaphylactique

Interrogatoire

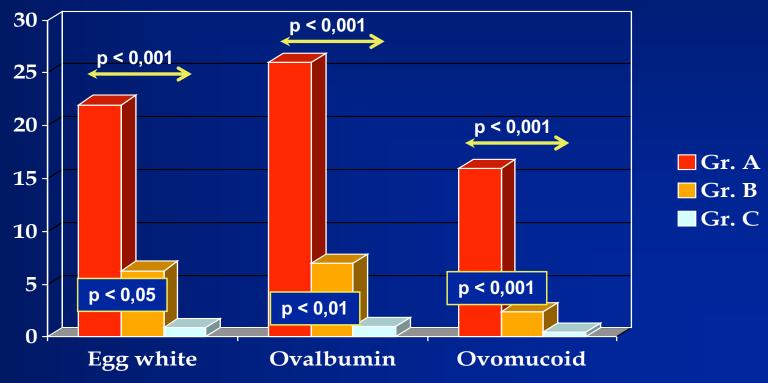
- > HDM & antécédents personnels :
 - naissance à terme après une grossesse normale
 - allaitement maternel exclusif interrompu à 1,5 mois (abcès mammaire), et remplacé par le lait de vache (formule 1^{er} âge):
 - >1er biberon : vomissements et pâleur, rapidement réversibles/arrêt
 - > 2^e biberon 1h plus tard: vomissements et pâleur immédiats, urticaire et AO, diarrhée, asthénie, hypotension —» hospitalisation en USI

> antécédents familiaux :

- mère : DA depuis l'enfance
- père : rhino-conjonctivite pollinique DS avec succès
- 1 sœur de 3 ans : RAS
- 1 frère de 6 ans : DA et bronchiolites du nourrisson, asthme allergique aux acariens d'apparition récente

Bernard W.: enfant de 1,5 mois, hospitalisé en urgence pour réaction anaphylactique

- Hypothèses étio-pathogéniques ? HSI aux protéines du lait de vache, secondaire à une sensibilisation occulte
 - par passage transplacentaire pendant la grossesse ?
 - par transmission par l'allaitement maternel ?
- Bilan diagnostique (pricks et slgE) : effectué quelques semaines après la réaction


Réactifs	prick-tests	sIgE (PRU/ml)
Témoin positif	5/10	
Témoin négatif	0	
Lait vache entier	5/10	16 (classe 3)
lpha-lactalbumine	2/4	0,40 (classe 1)
β-lactoglobuline	2/5	0,50 (classe 1)
Caséines	7/15	90 (classe 5)
Lait chèvre	5/8	12 (classe 3)
Lait brebis	4/9	13 (classe 3)
Soja	0	< 0,35
Blé (farine)	0	< 0,35

Utilité des slgEaliments ?

OUI:
- diagnostic et
pronostic
(caséines vs
autres protéines)
- suivi évolutif

Plus les concentrations des slgE-aliments sont élevées, plus le risque allergique et plus le risque d'allergie grave sont importants

Ando H et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol 2008; 122: 583-588). Results of egg-specific IgE determinations (KUA/I) in children allergic to heated and raw egg (gr. A), raw egg only (Gr. B), and in egg-tolerant children (Gr. C).

Bernard W.: enfant de 1,5 mois, hospitalisé en urgence pour réaction anaphylactique

Traitement curatif & préventif ?

- éviction des laits et laitages de vache, chèvre et brebis
- remplacement par des hydrolysats poussés de protéines du lait de vache (si échec : recours à des formules à base exclusive d'acides aminés synthétiques)
- > ± cromoglycate po au long cours lors de la diversification alimentaire

Suivi & évolution ?

- suivi régulier des TC et slgE aux allergènes du lait
 - —» si diminution significative/négativation : essai de réintroduction prudente en HDJ (75 % de guérisons spontanées, sauf lors d'allergie aux caséines)
 - —» si persistance de l'allergie : essai de DS po prudente en milieu hospitalier
- bilans allergologiques réguliers : recherche de sensibilisations naissantes aux aéro-allergènes et/ou à d'autres aliments (risque = 75 %)

Héloïse N, 6 ans : « allergie à l'arachide »

- » Histoire clinique
 - > DA, asthme jusqu'au 4 ans
 - > 2,6 ans: urticaire du visage après ingestion d'une pâtisserie à la noix du Brésil (depuis, éviction des fruits à coque)
- » Bilan à 3 ans (allergologue libéral) :

Allergène	TC (mm)	slgE (KU/I)
Arachide	6/20	10
Noix cajou	5/16	8,2
Noix Brésil	4/20	3,5

Quels tests manquants?

— slgE allergènes moléculaires (mais inexistants à l'époque)

— TPO noix de cajou/arachide

Diagnostic et recommandations : allergie à l'arachide et autres fruits à coque
 —» éviction stricte, trousse urgence contenant de l'adrénaline, PAI.

D'après E. Bradatan: CHR Namur

Héloïse N, 6 ans : allergie à ???

» Revue à 6 ans :

- > absence des réactions d'AA sous éviction des FAC, des huiles et traces d'arachide + panier repas à l'école + trousse de secours contenant de l'adrénaline auto-injectable
- mais, rhino-conjonctivite saisonnière (fin hiver-début été) depuis l'âge de 3,5 ans

>>	Bilan allergologique
	Bilan allergologique (hospitalier)

Intérêt des dosages des sigE-allergènes moléculaires: détection des sensibilisations — pathogènes/non pathogènes — par allergènes propres/croisants

Allergène	TC (mm)	sIgE (KU/I)
Arachide	3/10	Arachide = 2,5 Ara h 1, Ara h 2, Ara h 3 = 0 Ara h 8 = 41,5
Noix cajou	3/10	1,8
Noix Brésil	2/8	1,3
Phléole	6/20	18,5
Bouleau	5/15	Bouleau = 23,2 Bet v 1 = 32,3

» Que faire de plus ??? ———»

TPO arachide, noix de cajou et noix du Brésil en HDJ : bien tolérés

- » Diagnostic et CAT ?
 - > sensibilisation croisée pollens-aliments par l'intermédiaire des PR10 (Ara h 8/Bet v 1)
 - > arrêt de l'éviction des fruits à coque
 - désensibilisation aux pollens de bétulacées (± graminées)

D'après E. Bradatan: CHR Namur

Claude P.: homme de 45 ans, consultant pour urticaire généralisée d'origine alimentaire

Interrogatoire

- > HDM : urticaire géante suite à un repas tunisien copieux, comportant
 - un whisky accompagné d'un mélange de cacahuètes et autres nuts
 - une salade de tomate et de thon, en entrée
 - une grosse demi-langouste grillée
 - un fromage fermenté de brebis
 - un gâteau au chocolat, puis des fraises, au dessert
 - le tout largement arrosé d'un vin rosé frais du pays
 - un café et un alcool fort, d'origine locale
 - à noter : prise de 2 comprimés de 500 mg d'aspirine, en début de repas
- > antécédents personnels :
 - rhinite aux acariens et aux pollens de sévérité modérée
 - pas d'allergie alimentaire connue
 - HSI à la fluorescéine et photo-allergie à l'acide nalidixique
- > antécédents familiaux d'atopie = oui

Claude P.: homme de 45 ans, consultant pour urticaire généralisée d'origine alimentaire

* Bilan allergologique?

Réactifs	Pricks (mm)	slgE (KU/L, classe)
Témoin positif	8/20	
Témoin négatif	0/0	
Arachide	0/0	0,45 (classe 1)
Noisette	0/0	< 0,35
Amande	0/0	< 0,35
Tomate	0/0	< 0,35
Thon	0/0	< 0,35
Langouste	0/0	< 0,35
Crabe	0/0	
Crevette	0/0	
Fraise	0/0	< 0,35
Chocolat	0/0	< 0,35

Justifié?

P'tet bien qu'oui, p'tet bien qu'non!!!

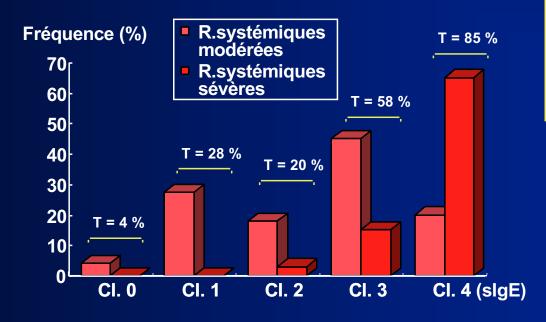
A quoi penser ??

Claude P.: homme de 45 ans, consultant pour urticaire généralisée d'origine alimentaire

- Diagnostic ? fausse allergie alimentaire typique, par
 - consommation exagérée d'aliments histamino-libérateurs et/ou riches en amines vaso-actives
 - perméabilité intestinale accrue (alcool, aspirine)
 - Evolution : depuis, consommation bien tolérée
 - des aliments incriminés, en plus faibles quantités et de façon dissociée
 - de l'aspirine

Benoît G. : garçon de 9 ans, consultant pour réaction anaphylactique à une piqûre d'hyménoptère

- Interrogatoire
 - » HDM: piqûre de guêpe au pied (insecte identifié) l'été précédent
 - urticaire généralisée et oedème de Quincke avec gêne laryngée
 - chronologie (quasi) immédiate
 - régression complète en 24 h sous corticoïdes injectables, à l'hôpital
 - » antécédents personnels
 - pas de notion de piqûre antérieure
 - DA du nourrisson, asthme depuis l'âge de 6 ans
 - scoutisme (camps d'été)
 - » antécédents familiaux d'atopie = oui
- ❖ Bilan initial concordant avec l'histoire clinique
 - » TC au venin de guêpe vespula = 7/30 à 0,001 □g/ml
 - » slgE-guêpe vespula = 18 KU/I
- Traitement préventif = DS, débutée quelques semaines plus tard


Benoît G. : garçon de 9 ans, consultant pour réaction anaphylactique à une piqure d'hyménoptère

❖ Suivi & évolution ? HC (injections d'extrait allergénique, repiqûres accidentelles), TC, slgE (± slgG4)

Dates et tests	Nov. 91	Juin 93	Mars 95	Jan. 97
Repiqûres		Non	r. locale ±	r. locales ±
T. Positif	4/15	5/20	10/45	7/30
T. Négatif	0	0	0	0
Prick GV 1 μg/ml	3/15	0	0	0
IDR GV				
- 0,001 μg/ml	7/30	0	0	0
- 0,01 μg/ml		9/30	0	0
- 0,1 mcg/ml			5/15	0
- 1 μg/ml				5/20
slgE-GV (PRU/ml)	18	4	ND	1,5
IgG4-GV	ND	165 %	120 %	72 %
				Arrêt DS

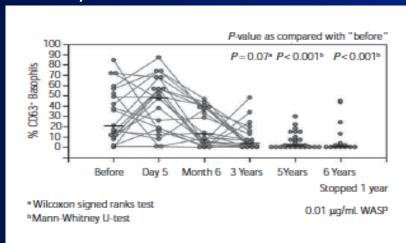
Dosages des slgE-venins d'hyménoptères: intérêt diagnostique, prédictif et d'efficacité de la DS

Fréquence des réactions systémiques lors des tests de provocation réalistes au venin d'abeille en fonction des résultats des dosages des sigE (Day et al : JACI, 1994)

Fréquence des récidives aprè DS selon les motifs d'arr diverses)	s l'arrêt de la êt (références
Motif	Récidives (%)
Décision du patient	≥ 10 %
Négativation des slgE seules	3 - 14 %

Négativation des TC seuls

Négativation des TC + slgE


≈ 0 %

≈ 0 %

Autres critères d'efficacité de la DS aux venins d'hyménoptères

Difficilement ou non applicables en pratique courante : diminution ou négativation du TLH/TAB

Effects of venom immunotherapy on the sensitivity of basophils (Ebo et al. J Investig Allergol Clin Immunol 2008; 18: 493-494).

Basophil activation can predict clinical sensitivity in patients after venom immunotherapy. (Kucera P et al. J Investig Allergol Clin Immunol 2010; 20: 110-116.)

- 21 patients en fin de DS + 5 témoins non allergiques
- TC, slgE et TAB/CD63 peu avant un TP réaliste

Sujets	TP	slgE (m)	TAB positifs (%)	Expression du CD63 (%)
Témoins	toléré	ND	0 %	13 %
р			NS	NS
Patients	toléré	2.9 KU/I	12.5 %	14 %
р		NS	0.01	0.03
Patients	réaction	9.1 KU/I	80 %	56 %

Mr Swan: homme de 67 ans (d'après le Dr. Xavier Van der Brempt, Namur)

Histoire clinique : piqûre d'hyménoptère au coude (insecte non identifié) —» urticaire géante + discrète gêne respiratoire immédiate (quelques minutes), régressant en quelques heures sous corticoïdes injectables.

Bilan allergologique:

- prick-test témoin positif = positif
- prick-test témoin négatif = négatif
- prick-test guêpe vespula (1 mg/ml) = négatif
 IDR guêpe vespula = franchement positives à 0.001 et 0.01 μg/ml
- prick-test abeille (1 mg/ml) = négatif
- IDR abeille = légèrement positive à 0.01 μg/ml
- IgE spécifiques guêpe vespula = 22.8 KÚ/I
 IgE spécifiques abeille = 5.37 KU/I

Que faire de plus / double sensibilisation guêpe-abeille ?

—» dosages des IgE sériques spécifiques des allergènes moléculaires ± IgE anti-CCDs

Mr Swan: homme de 67 ans (d'après le Dr. Xavier Van der Brempt, Namur)

Histoire clinique : : piqûre d'hyménoptère au coude (insecte non identifié) —» urticaire géante + discrète gêne respiratoire immédiate (quelques minutes), régressant en quelques heures sous corticoïdes injectables.

Bilan allergologique:

- prick-test témoin positif = positif
- prick-test témoin négatif = négatif
- prick-test guêpe vespula (1 mg/ml) = négatif
- IDR guêpe vespula = franchement positives à 0.001 et 0.01 μg/ml
- prick-test abeille (1 mg/ml) = négatif
- IDR abeille = légèrement positive à 0.01 μg/ml
- IgE spécifiques guêpe vespula = 22.8 KU/I
 IgE spécifiques abeille = 5.37 KU/I

- IgE spécifiques rVes v 5 = 13.1 KU/L
- IgE spécifiques rApi m 1 = 0.29 KU/I
- IgE spécifiques broméline = 3.3 KU/I

Diagnostic ? allergie immédiate au venin de guêpe vespula.

Que faire et pour quelles raisons?

- DS-venin de guêpe vespula
- bilan (TC + IgE sp.) franchement positif / venin de guêpe vesupla
- réaction (potentiellement) grave
- facteurs de risque associés (âge, atopie probable, exposition, traitement antihypertenseur)

Réactions IgE-médiées aux bêtalactamines chez l'enfant (cas clinique n° 1)

Celine M.: 11.5 ans, non atopique

Drug history : bêtalactamines diverses bien tolérées jusqu' à l'âge de 9.5 ans

> 9.5 ans : pénicilline G —» urticaire accélérée

> 10.5 ans : Oroken —» urticaire et angio-oedème géants immédiats

> 10.7 ans : Bristopen —» urticaire/angio-œdème + œdème laryngé immédiats

> depuis: pas de traitement par des bêtalactamines

TC (pricks & ID) : lecture à	20 mn
- PPL	positif
- MDM	ND
- Pénicilline G	positif
- Bristopen	positif
- Amoxicilline	positif
- Céfazoline	positif
- Claforan	positif

Diagnostic value of betalactam-specific IgE (penicillins G & V, ampicillin, amoxicillin, cephaclor)		
Specific IgE determination Positive		
Patients with positive work-up	≤ 75 %	
Control subjects tolerant to the drugs 8 - 10 %		
Patients with negative ST and cb		

slgE pénicillines G and V, ampicilline, amoxicilline : négatifs

Diagnostic : HSI à toutes les classes de bêtalactamines

Bonne valeur diagnostique des TC à lecture immédiate aux bêtalactamines et mauvaise valeur diagnostique des tests in vitro.

Exploration des réactions immédiates aux vaccins courants Réactions anaphylactiquse sévères (cas n° 2)

- Alain V. : enfant non atopique
 - » 1986 (1ère année) et 1987 (2ème année) —» vaccinations D.T.C.Pol.HiB bien tolérées
 - » 1993 (7 ans) : 5^{ème} injection de D.T.Pol —» urticaire et œdème généralisés avec gêne laryngée, de chronologie immédiate
 - » 1995 (9 ans): 1er bilan immuno-allergologique
 - » 1999 (13 ans): 2^{ème} bilan immuno-allergologique
- Quel bilan immuno-allergologique ?
 - » TC à lecture immédiate : vaccins D.T.Pol, D.T, T et Pol
 - » Dosages des sigE
 - anatoxines diphtérique et tétanique
 - formaldéhyde
 - » Anticorps sériques : anti-diphtériques, tétaniques et poliomyélitiques
 - —» POURQUOI ???
 - diagnostic différentiel possible / anaphylaxie allergique IgG-médiée
 - suivi de la couverture vaccinale et de l'indication des injections de rappel

Exploration des réactions immédiates aux vaccins courants Réactions anaphylactiques sévères (cas n° 2)

* Résultats des bilans immuno-allergologiques

Tests/bilan	1995 (9 ans)	1999 (13 ans)
TC lect. Immédiate		
- DTCP	ND	ND
- DTP	+++	++
- DT	+++	++
-T	+++	++
- Polio	0	ND
slgE		
- D	0	0
-T	cl. 2	 0
- formol	0	0
Ac sériques		
- D	+ ≥ 5 ans	0
-T	+ ≥ 5 ans	0
- Polio	+ ≥ 5 ans	0

Réactions vaccinales (présumées) allergiques : —» tests cutanés + dosages des sIgE (si

+ dosages des anticorps protecteurs

—» rappels de vaccination:

existants)

- » D.T (accoutumance) : bien tolérée
- » Polio (per os) : bien tolérée

Allergie immédiate : épidémiologie, physiopathologie, grands principes diagnostiques & thérapeutiques

